
Set-based similarity learning in subspace for agricultural remote
sensing classification

Yi Tang a, Xinrong Li b

a Key Laboratory of IOT Application Technology of Universities in Yunnan Province, Department of Mathematics and Computer Science, Yunnan Minzu
University, Kunming, Yunnan 650500, PR China
b Institute of Plant Nutrition and Natural Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

a r t i c l e i n f o

Article history:
Received 30 June 2014
Received in revised form
24 September 2014
Accepted 12 November 2014
Available online 11 September 2015

Keywords:
Agricultural remote sensing
Point-based similarity
Set-based similarity
Similarity learning
Hyperspectral image classification

a b s t r a c t

Similarity between spectral lines is key in the field of agricultural sensing classification, however, the
measured spectral lines mostly mislead the classification because of unexpected disturbance in appli-
cation. To enhance the accuracy of classification, similarity learning is introduced into agricultural remote
sensing classification. Within the framework of similarity learning, the training set is generated by
pairing the labeled spectral lines which means the size of training set for learning similarity is heavily
increasing. Noticed this problem, a novel spectrum-set similarity learning algorithm is reported for
balancing the gain in classification and the computational burden of learning similarity. Different from
traditional point-based similarity, the spectrum-set similarity measures the similarity between two
spectral sets which contain some spectral lines. Following the idea, set-based training set is generated by
clustering the spectral lines in the point-based training set. Experimental results have shown the
effectiveness and efficiency of learning spectrum-set similarity measure for agriculture sensing classi-
fication.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Distinguishing the crops on the ground is an important appli-
cation of agricultural remote sensing. Hyper-spectral information
of kinds of crops is recorded by sampling hundreds or even
thousands of bands of continuous spectra, which contains rich
discriminant information on classifying crops. Because of the dis-
criminant information, different crops could be classified by
measuring the similarity between their spectral lines. Though
agricultural remote sensing classification is possible by directly
using spectral information, it is more efficient and effective to
modify the spectral information for classification.

It is prevalent to learn discriminant information of spectral
lines via subspace learning [1–4] in the field of hyper-spectral
image classification [5]. The discriminant information of original
spectral lines is extracted by representing the original spectral
lines in a low-dimensional space explicitly or implicitly [6]. For
example, general subspace learning based methods include the
linear discriminant analysis [7,8] and nonparametric weighted
feature extraction [9].

Based on these subspace based methods, more efficient and
effective methods are also proposed for dealing with the specific

problems of agricultural remote sensing classification. For instants,
regularized linear discriminant analysis [10] and refined Fisher's
linear discriminant analysis [8] are introduced into for releasing
the interference of the scarcity of labeled spectral lines. Taking
advantages of unlabeled spectral lines, manifold subspace learning
methods [11,12] and graph-based semi-supervised learning
methods are also employed. The core of these methods is to design
an appropriate similarity measure in a low-dimensional subspace
to boost the separability of training samples.

Similarity measure is the paraphrase of the labeled information
of training spectral lines. For example, the samples are similar if
they share same label index, but not vice versa. Unfortunately, the
similarity induced by label indices may be inconsistent with the
similarity induced by a similarity measure defined in the spectral
feature space. So learning a suitable similarity measure is a hot
topic in the field of designing classification algorithms. Especially,
the process of learning similarity in a spectral feature space is
mostly a part of many nearest-neighbor-based classification algo-
rithms. For example, nearest-neighbor-based nonparametric fea-
ture extraction method [13] emphasizes the importance of refining
the similarity measure, and the similarity of matrix-based features
is employed in [14].

The relation between classification and similarity learning
motivates us to consider the problem of agricultural remote sen-
sing classification via learning an appropriate similarity measure.
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By using nearest-based classifiers as medias, learning a classifier is
equivalent to learning a similarity measure which is represented
by a low-rank and positive-definite matrix. It should be noticed
that the size of training set gets much huger when a problem of
classification turns into a problem of learning similarity measure.
For example, given n labeled training samples for classification, O
ðn2Þ labeled training samples for learning similarity measure could
be generated by pairing the samples for classification.

Motivated by the success of set–set distance learning [15,16],
spectrum-set similarity measure is introduced in this paper for
responding to the challenges of large scale problem of treating a
classification as learning similarity. Different from traditional
similarity learning algorithms such as [17–19], spectrum-set
similarity measure defines the similarity between training sub-
sets. Because training subsets replace training points, the size of
training set will be dramatically reduced, which could improve the
efficiency of learning similarity measure.

The main contribution of this paper is treating agricultural
remote sensing classification as a set-based similarity learning
which is helpful in balancing the effectiveness of classification and
the efficiency of learning similarity measure.

The rest of this paper is organized as follows. The results about
main algorithm are reported in Section 2. Experimental results
have shown in Section 3. The paper is ended with a conclusion
in Section 4.

2. Main algorithm

2.1. Point-based model

In this subsection, a point-based model is introduced for
unveiling the core idea of classification via learning similarity
measure. Let ðx1; y1Þ; ðx2; y2Þ;…; ðxn; ynÞ

� �
DX � Y be a training set

containing n training samples where X is a spectral feature space
and Y ¼ 1;2;…; k

� �
is the label indices space. For a test sample

xAX , the label of x could be estimated by comparing the similarity
between training and test spectral features. Specifically, the esti-
mated label ŷ corresponding to x is defined by yin where

in ¼ arg min
i ¼ 1;2;…;n

Sðx; xiÞ: ð1Þ

Here, Sð�; �Þ is a similarity measure function defined on X � X .
The similarity measure function Sð�; �Þ is generally defined by

Euclidean distance. Thus, the optimization problem (1) could be
expressed as

in ¼ arg min
i ¼ 1;2;…;n

x�xik k22: ð2Þ

Though the Euclidean distance based similarity measure is
popular in application, the consistency between the similarity
measures induced by Euclidean distance and the labels of spectral
lines is always suspicious. To enhance the consistency between
both similarity measures, the original spectral features are mostly
mapped into a low-dimensional subspace by a low-rank projection
matrix P. That is

in ¼ arg min
i ¼ 1;2;…;n

Pðx�xiÞ
�� ��2

2: ð3Þ

The best low-rank projection matrix Pn which promises the
best consistency between distance based similarity and index
based similarity could be learned with the help of training data.
Because the labels of training samples are given, the index based
similarity between any training samples ðxi; xjÞ could be defined by

their labels. For example

SIðxi; xjÞ ¼
1 yi ¼ yj
�1 yiayj

(
ð4Þ

where SIð�; �Þ is the index based similarity measure function.
Taking advantages of SI, the information of class labels could be

explained as similarity information. The triple set

T ¼ ðxi; xj; SIðxi; xjÞÞj i; j¼ 1;2;…;n
� � ð5Þ

describes the consistency between the distance based similarity
and the index based similarity where the distance based similarity
could be defined as

SDðxi; xjÞ ¼
1 Pðxi�xjÞ

�� ��2
2oγ;

�1 Pðxi�xjÞ
�� ��2

2Zγ:

8<
: ð6Þ

Here γ40 is a threshold. The consistency between the index
based similarity measure SIðxi; xjÞ and the distance based similarity
measure could be measured by verifying the equation
SIðxi; xjÞ ¼ SDðxi; xjÞ.

According to the rule of empirical risk minimization [20–22],
the best consistency between index based similarity and distance
based similarity could be generated by the optimal low-rank
projection matrix Pn which is obtained by optimizing the empiri-
cal risk function

Pn ¼ arg min
P

X
1r i;jrn

LðSIðxi; xjÞ; signðγ� Pðxi�xjÞ
�� ��2

2ÞÞ; ð7Þ

where Lð�Þ is a classification risk function [23,24] defined on real
and satisfies Lipschitz condition, and signð�Þ is the sign function.
Notice that

Pðxi�xjÞ
�� ��2

2 ¼ 〈P0P; ðxi�xjÞðxi�xjÞ0〉F ð8Þ
where P0 is the transpose matrix of P and 〈�; �〉F is the Frobenius
inner. Thus the problem (7) could be rewritten by using the for-
mula (8) as

Pn ¼ arg min
P

X
1r i;jrn

LðSIðxi; xjÞ; signðγ� 〈PP0; ðxi�xjÞðxi�xjÞ0〉F ÞÞ: ð9Þ

Denote PP0 ¼M. It is clear that M is a low-rank, symmetric and
positive-definite matrix because P is a low-rank matrix. So the
problem of learning the low-rank projection matrix P is equivalent
to the problem of learning the low-rank and positive-definite
matrix M, that is,

Mn ¼ arg min
M

X
1r i;jrn

LðSIðxi; xjÞ; signðγ� 〈M; ðxi�xjÞðxi�xjÞ0〉F ÞÞ: ð10Þ

Considering the low-rank and positive-definite restrictions of
symmetric matrix M, the optimization problem (10) could be
expressed as its regularization version

Mn ¼ arg min
M

X
1r i;jrn

LðSIðxi; xjÞ; signðγ�〈M; ðxi�xjÞðxi�xjÞ0〉F ÞÞþμ Mk kn;

ð11Þ
where μ40 is the regularization parameter, and �k kn is the nuclear
norm which is used as a relaxation of the low-rank restriction.

Combining the formula (3) and the learned low-rank matrix
Mn, a refined classification could be generated by a refined simi-
larity measure which means

in ¼ arg min
i

Pnðx�xiÞ
�� ��2

2

¼ arg min
i

〈Mn; ðx�xiÞðx�xiÞ0〉F : ð12Þ

Therefore, classification could be understand as a problem of
learning similarity in a subspace which leads to a low-rank simi-
larity matrix learning problem (11).
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