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a b s t r a c t

Co-clustering leads to parsimony in data visualisation with a number of parameters dramatically reduced
in comparison to the dimensions of the data sample. Herein, we propose a new generalized approach for
nonlinear mapping by a re-parameterization of the latent block mixture model. The densities modeling
the blocks are in an exponential family such that the Gaussian, Bernoulli and Poisson laws are particular
cases. The inference of the parameters is derived from the block expectation–maximization algorithm
with a Newton–Raphson procedure at the maximization step. Empirical experiments with textual data
validate the interest of our generalized model.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For the visualisation [1,2] of a data matrix, the main proximities
or the higher correlations are summarized by a comprehensible
and low dimensional graphical view. When the number of vari-
ables is large, the visualisation may combine a preprocessing stage
by selection or linear transformation [3–5]. In a co-clustering
method, both sides of the matrix are partitioned [6], hence the
reduction of the variables space and the row clustering occur
simultaneously. A earliest co-clustering formulation called direct
clustering was introduced by Hartigan [7] who proposed a greedy
algorithm for hierarchical co-clustering. We can also mention the
following works [8–12] and the reviews in [13–15]. These methods
are dedicated to a simultaneous clustering but not to visualisation.

Co-clustering is combined to self-organizing maps (SOM) for
visualisation or clustering purposes in many ways in the literature
[16–22], with illustrations to biological or textual data. Such
combination can improve the quality of the clustering [23,24],
with two contributing modeling factors or four sub-ones. Roughly
speaking, the co-clustering leads to (a) the parsimony of the
parameters and (b) the groups of variables. And, the auto-
organization leads to (c) the partition of each class into several
clusters and (d) the connections between neighbour clusters. Note

that the subfactors (c) can enhance the classification [25], while
(a) and (b) the regression [26].

The family of methods SOM counts the variants and the
extensions of the Kohonen's map [27] which is a sequential clus-
tering algorithm with decreasing connections of vicinity between
the clusters for mapping continuous data. Modified versions are
adapted to the analysis of discrete, sequential or block matrices for
instance. Moreover, generative models for self-organizing maps
has been justified [28–30]. The Generative Topographic Mapping
(GTM) [31] is a probabilistic model of SOM for data visualisation
[32–35]. In GTM the auto-organization of the clusters is directly
induced by the parameterization. The algorithm of Kohonen's map
is re-formulated by embedding the auto-organization process at
the level of the means of a Gaussian mixture model (GMM) [36].

Herein we are interested on a probabilistic co-clustering model,
the latent block mixture model (LBM) [12,37,38], in order to
visualize the natural classes in a block matrix with a para-
meterization similar to GTM. First, we define a general model of
LBM with the help of an univariate exponential family [39] which
is well suited for most kinds of numerical variables. Then we
introduce a parameterization of the central parameters in order to
simultaneously perform the clustering and the reduction of the
obtained clusters in a low dimensional space. The model is general
enough to be related not only to self-organizing maps but also to
recent approaches in factorization [40–42]. This offers a broad
perspective for data analysis as illustrated through a generalized
method for block generative topographic mapping or block GTM
(BGTM) [43,44]. If the previous models of block generative topo-
graphic mapping have been proposed for only one particular
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distribution for the blocks, the new generalization is able to pro-
vide a unified framework for the visualisation of data block
matrices and can help for implementing and comparing alter-
native distributions in future.

The paper is organized as follows. In Section 2, we introduce the
latent block model for an exponential family and add the con-
straints. In Section 3, we present the related objective function to
optimize for the estimation of parameters. We deduce the learning
algorithm in a general setting, from the block expectation–max-
imization (BEM) [45]. In Section 4 we present the connection of our
approach with GTM and discuss the resulting nonlinear visualisa-
tion. In Section 5 we present the numerical experiments for
testing the proposed approach. Finally, in Section 6 we summarize
our contribution.

2. Generalized LBM

Let us have x≔fxij; i¼ 1;…;n; j¼ 1;…; dg stands for a data
matrix of size n� d. When x is a two-way contingency table it is
associated to two categorical variables that take values in sets
I ¼ f1;…;ng and J ¼ f1;…; dg. In this case, the entries xij are co-
occurrences of row and column categories, each of them counts
the number of entities that fall simultaneously in the corre-
sponding row and column categories. Let z andw be partitions in g
row clusters and m column clusters of I and J of x. The partition z
will be represented by the vector of labels ðz1;…; zi;…; znÞ where
ziAf1;…; gg or, by the classification matrix fzik; i¼ 1;…;n; k¼
1;…; gg where zik ¼ 1 if i belongs to the kth cluster and 0 other-
wise. A similar notation will be used for the partition w which will
be represented by the vector ðw1;…;wj;…;wdÞ where
wjAf1;…;mg or the classification matrix fwjℓ; j¼ 1;…; d;ℓ¼
1;…;mg. Note that zikwjℓ ¼ 1 if xij belongs to the ðkℓÞth block and
0 otherwise. For a latent block model, the n� d random variables
that generate the observed cells xij are assumed to be independent,
once z and w are fixed, they make it possible to define a co-
clustering model. Hereafter, to simplify the notation, the sums and
the products relating to rows, columns or clusters will be sub-
scripted respectively by the letters i, j, k, or ℓ without indicating
the limits of variation, which are implicit.

2.1. Latent block model (LBM)

The probability density function (pdf) of a latent block model is
denoted f LBMðx;θÞ and defined as the following decomposition. It
is obtained by independence of z and w, by summing over all the
assignments [12] and takes the following form:X
ðz;wÞAZ�W

∏
i
pzi∏

j
qwj

∏
i;j
φðxij;αij

ziwj
Þ;

where the set of all the possible assignments is denoted Z for I and
W for J, while φð:;αij

kℓÞ is a probability density function defined for
cell ðijÞ on the set of reals R while αij

kℓ depends on the parameter
αkℓ as given in (1). The vectors of the probabilities pk and qℓ that a
row (resp. a column) belongs to the kth component (resp. ℓth
component) are denoted p¼ ðp1;…; pgÞ (resp. q¼ ðq1;…; qmÞ). The
set of parameters is denoted θ and is a compound of p and q plus
α which aggregates all the parameters from the pdf of the cells,
θ¼ fp;q;αg. The set of parameters θ of the model can be estimated
by maximizing the log-likelihood:

Lðx;θÞ ¼ log f LBMðx;θÞ:
The block model is dramatically more parsimonious than the

usual mixture model where each dimension of the data table is
modeled separately. Next, we describe the latent block model
where φ is in an exponential family.

2.2. Univariate exponential family of distributions

When the cells are generated with an exponential family, the
latent block model is denoted in the following ELBM and the
density function for the ðkℓÞth block is written as

φðxij;αij
kℓÞ ¼ exp xijAðαij

kℓÞ�Bðαij
kℓÞþCðxijÞ

� �
;

where Aðαij
kℓÞ is the natural parameter, while Bðαij

kℓÞ and CðxijÞ
ensure that φ is a probability density function. The considered
form of distributions is defined without nuisance parameter and
without loss of generality. Note that a more general expression is
possible for modeling more particular distributions. For instance a
function of xij could be used instead of the identity one or A could
be chosen multivariate. It is also supposed that the quantities αij

kℓ
are written as a function of a fixed parameter depending on the
data βij and an unknown parameter named αkℓ, such that

αij
kℓ ¼ βijαkℓ: ð1Þ

The model can be represented by a graphical model depicted in
Fig. 1. Here two aggregating matrices are involved, α¼ ðαkℓÞg�m for
the parameters and β¼ ðβijÞn�d for the multiplicative effects. Three
cases of distributions which belong to this family for discrete and
continuous matrices are considered. The different distributions are
listed in Table 1, where the cells are drawn from one particular
distribution. For a Bernoulli law with the parameters αkℓ, the
model is denoted BLBM [12]. For a Poisson law with the para-
meters αkℓ, it is denoted PLBM [46], with μ¼ ðμ1;…;μnÞT where
μi ¼

P
jxij and ν¼ ðν1;…;νdÞT where νj ¼

P
ixij. For a normal law, it

is denoted GLBM [47] with the means αkℓ and the variances skℓ0
assumed constant here. For the three cases, the support for the
variables generating the observation xij and the parameter range of
αkℓ are defined in Table 1. Note that in the case of a Poisson law,
the parameters αkℓ can be chosen unconstrained as introduced in
[46], and the quantities βij can be optimized too in certain cases.
Next, each parameter αkℓ is written with a link function as
explained.

2.3. Re-parameterization of the model

The parameters of the exponential latent block model are
parameterized with two sets of (unknown) vectors,

fξkARh;1rkrgg;
fwℓARh;1rℓrmg: ð2Þ
where hANn

þ is the dimension of the latent space. These two sets
of vectors are used for modeling the blocks ðkℓÞ because each αkℓ

is dependent on two indices, k and ℓ. As an effect from the kth and

Fig. 1. Graphical notation for the Latent block model with random variables X, Z
and W generating the observations and latent labels.
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