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a b s t r a c t

This paper studies the equilibrium and stability properties of the class of neutral-type neural network

model with discrete time delays. By employing a Lyapunov functional and examining the time

derivative of the Lyapunov functional, we obtain some delay independent sufficient conditions for

the existence, uniqueness and global asymptotic stability of the equilibrium point for this class of

neutral-type systems. The obtained conditions can be easily verified as they can be expressed in terms

of the network parameters only. We also compare our results with the previous corresponding results

derived in the literature by giving some numerical examples.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, various classes of neural networks such as
Hopfield neural networks, Cohen–Grossberg neural networks, cellular
neural networks, bidirectional associative memory neural networks
have been widely used in solving some signal processing, optimiza-
tion, image processing problems. When designing a neural network
for such applications, it is crucial to know the equilibrium and
stability of properties of the designed neural network that depends
on the network parameters on the neural system. On the other hand,
in the hardware implementation of dynamical neural networks, due
to the finite switching speed of amplifiers and the transmission
delays during the communication between neurons, some time
delays inevitably occur in the network, which affects the dynamical
behavior of the neural systems. Therefore, equilibrium and stability
properties of various classes of neural networks at the presence of
time delays have received a great deal of attention in the recent
literature [1–34]. In the classical neural network models such as
Hopfield neural networks, Cohen–Grossberg neural networks, cellular
neural networks, bidirectional associative memory neural networks,
the time delays are in the states of the neural system. However, since
the time derivatives of the states are the functions of time, in order to
completely determine the stability properties of equilibrium point,

some delay parameters must be introduced into the time derivatives
of states of the system. The neural network model having time delays
in the time derivatives of states is called delayed neutral-type neural
networks. This class of neutral systems has been used in many areas
such as population ecology [11], distributed networks with lossless
transmission lines [11], propagation and diffusion models [12] and
VLSI systems [12]. In the recent literature, many researchers have
studied the equilibrium and stability properties of neural networks of
neutral type with a single delay and presented various sufficient
conditions for the global asymptotic stability of the equilibrium point
[1–32].The results obtained in these papers are basically expressed in
the linear matrix inequality (LMI) forms. The LMI approach to the
stability problem of neutral-type neural networks involves some
difficulties with determining the constraint conditions on the net-
work parameters as it requires to test positive definiteness of high
dimensional matrices. In the current paper, by employing a suitable
Lyapunov functional, we will present new delay-independent suffi-
cient conditions for the existence, uniqueness and global asymptotic
stability of the equilibrium point for the class of neutral-type neural
networks with many delays. Our results establish various relation-
ships between the network parameters only. Therefore, the results of
this paper can be easily verified when compared with the previously
reported literature results in the LMI forms.

Throughout this paper we will use those notations: For any matrix
P¼ ðpijÞn�n, P40 will denote that P is symmetric and positive

definite, PT, P�1, lmðPÞ and lMðPÞ will denote the transpose of P, the
inverse of P, the minimum eigenvalue of P and the maximum
eigenvalue of P, respectively. We will use the matrix norm
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JPJ2 ¼ ½lMðP
T PÞ�1=2. For any two positive definite matrices P¼ ðpijÞn�n

and Q ¼ ðqijÞn�n, If Q 40, then P4Q will imply that P40.

For v¼ ðv1,v2, . . . ,vnÞ
T ARn, we will use the vector norms

JvJ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1 v2

i

q
and JvJ1 ¼

Pn
i ¼ 1 9vi9.

2. Problem statement

Consider the following set of nonlinear differential equations
that describe the class of neutral-type neural network model with
a single delay:

_xiðtÞ ¼�cixiðtÞþ
Xn

j ¼ 1

aijf jðxjðtÞÞþ
Xn

j ¼ 1

bijf jðxjðt�tÞÞ

þ
Xn

j ¼ 1

eij _xjðt�tÞþui, i¼ 1,: :,n ð1Þ

By introducing more delay parameters into the system equations
of delayed neutral-type neural networks, we obtain the general-
ization of neural network model (1), which is in the following
form of differential equations:

_xiðtÞ ¼�cixiðtÞþ
Xn

j ¼ 1

aijf jðxjðtÞÞþ
Xn

j ¼ 1

bijf jðxjðt�tjÞÞ

þ
Xn

j ¼ 1

eij _xjðt�tjÞþui, i¼ 1,: :,n ð2Þ

where n is the number of the neurons in the network, xi denotes
the state of the ith neuron, the parameters di are some constants
that keep the solution of system (2) bounded. The constants aij

denote the strengths of the neuron interconnections within the
network, the constants bij denote the strengths of the neuron
interconnections with time delay parameters tjðtÞ. eij are coeffi-
cients of the time derivative of the delayed states. Finally, the
functions f jð�Þ denote the neuron activations, and the constants ui

are some external inputs. In system (2), tjZ0 represents the
delay parameter with t¼maxðtjÞ, 1r jrn. Accompanying the
neutral system (2) is an initial condition of the form:
xiðtÞ ¼fiðtÞACð½�t,0�,RÞ, where Cð½�t,0�,RÞ denotes the set of all
continuous functions from ½�t,0� to R.

In this paper, the activation functions f ið�Þ, i¼ 1;2, . . . ,n are
assumed to be Lipschitz continuous, i.e., there exist constants
‘i40 such that

9f iðxÞ�f iðyÞ9r‘i9x�y9, i¼ 1;2, . . . ,n 8x,yAR,xay ð3Þ

Neural network model (2) can be written in the vector–matrix
form as follows:

_xðtÞ ¼�CxðtÞþAf ðxðtÞÞþBf ðxðt�tÞÞþE _xðt�tÞþu ð4Þ

where xðtÞ ¼ ðx1ðtÞ,x2ðtÞ, . . . ,xnðtÞÞ
T ARn, A¼ ðaijÞn�n, B¼ ðbijÞn�n,

E¼ ðeijÞn�n, C ¼ diagðci40Þ, u¼ ðu1,u2, . . . ,unÞ
T , f ðxðtÞÞ ¼ ðf 1ðx1ðtÞÞ,

f 2ðx2ðtÞÞ, . . . ,f nðxnðtÞÞÞ
T and f ðxðt�tÞÞ ¼ ðf 1ðx1ðt�t1ÞÞ,f 2ðx2ðt�t2ÞÞ,

. . . ,f nðxnðt�tnÞÞÞ
T .

The following lemma will play an important role in the proofs
of our main results:

Lemma 1 (Cheng et al. [26]). If a map HðxÞAC0 satisfies the

following conditions:

(i) HðxÞaHðyÞ for all xay,
(ii) JHðxÞJ-1 as JxJ-1,

then, HðxÞ is homeomorphism of Rn.

3. Existence and uniqueness analysis

In this section, we present some new delay independent
sufficient conditions for the existence and uniqueness of the
equilibrium point for neural network model (2) with the activa-
tion functions satisfying (3). We first obtain the following result:

Theorem 1. Under the assumption given (3), the neural network

model (2) has unique equilibrium point for each u if there exist a

positive diagonal matrix D and positive definite matrices P, Q and R

such that the following conditions hold:

O1 ¼ ðC
2
�D2
ÞL�2
�AT A�AT P�1A�AT Q�1A40

O2 ¼D2L�2
�BT B�BT PB�BT R�1B40

O3 ¼ I�ET E�ET QE�ET RE40

L¼ diagð‘1,‘2, . . . ,‘nÞ and I is the identity matrix of dimension of

n�n.

Proof. In order to prove the existence and uniqueness of the
equilibrium point, we consider the following mapping associated
with system (2):

HðxÞ ¼�CxþAf ðxÞþBf ðxÞþEHðxÞþu ð5Þ

If xn ¼ ðxn

1,xn

2, . . . ,xn
nÞ

T is an equilibrium point of (2), then xn

satisfies the following equation:

HðxnÞ ¼�Cxn
þAf ðxnÞþBf ðxnÞþEHðxnÞþu¼ 0

It is obvious that HðxÞ ¼ 0 is an equilibrium point of (2). Therefore,
we can directly conclude from Lemma 1 that, for the system
defined by (2), there exists a unique equilibrium point for every
input vector u if H(x) is homeomorphism of Rn. We will now show
that under the conditions of Theorem 1, H(x) is a homeomorphism
of Rn. Let us choose two vectors x, yARn such that xay. Note that,
under the assumptions on the activation functions given by (3),
when xay, we have either f ðxÞa f ðyÞ or f ðxÞ ¼ f ðyÞ. Therefore, for
xay, the existence and uniqueness analysis must be carried out
for the following two cases:

Case 1. xay and f ðxÞa f ðyÞ. In this case, H(x) defined by (5) satisfies:

HðxÞ�HðyÞ ¼�Cðx�yÞþAðf ðxÞ�f ðyÞÞþBðf ðxÞ�f ðyÞÞþEðHðxÞ�HðyÞÞ

ð6Þ

First multiplying both sides of (6) by ð2ðx�yÞCþHðxÞ�HðyÞÞT , and
then adding the term ðx�yÞT D2

ðx�yÞ�ðx�yÞT D2
ðx�yÞ ¼ 0 to the right

hand side of the resulting equation yields

ð2ðx�yÞT CþðHðxÞ�HðyÞÞT ÞðHðxÞ�HðyÞÞ

¼ ð2ðx�yÞT CþðHðxÞ�HðyÞÞT Þ � ð�Cðx�yÞþAðf ðxÞ�f ðyÞÞ

þBðf ðxÞ�f ðyÞÞþEðHðxÞ�HðyÞÞÞ

¼ ðCðx�yÞþAðf ðxÞ�f ðyÞÞþBðf ðxÞ�f ðyÞÞþEðHðxÞ�HðyÞÞÞT

�ð�Cðx�yÞþAðf ðxÞ�f ðyÞÞþBðf ðxÞ�f ðyÞÞþEðHðxÞ�HðyÞÞÞ

þðx�yÞT D2
ðx�yÞ�ðx�yÞT D2

ðx�yÞ

where D is a positive diagonal matrix. The above equation is
equivalent to:

2ðx�yÞT CðHðxÞ�HðyÞÞ

¼�ðHðxÞ�HðyÞÞT ðHðxÞ�HðyÞÞ

�ðx�yÞT C2
ðx�yÞþðx�yÞT CAðf ðxÞ�f ðyÞÞ

þðx�yÞT CBðf ðxÞ�f ðyÞÞþðx�yÞT CEðHðxÞ�HðyÞÞ

�ðf ðxÞ�f ðyÞÞT AT Cðx�yÞþðf ðxÞ�f ðyÞÞT AT Aðf ðxÞ�f ðyÞÞ

þðf ðxÞ�f ðyÞÞT AT Bðf ðxÞ�f ðyÞÞ

þðf ðxÞ�f ðyÞÞT AT EðHðxÞ�HðyÞÞ�ðf ðxÞ�f ðyÞÞT BT Cðx�yÞ

þðf ðxÞ�f ðyÞÞT BT Aðf ðxÞ�f ðyÞÞþðf ðxÞ�f ðyÞÞT BT Bðf ðxÞ�f ðyÞÞ
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