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In this paper, we developed a wavelet neural network (WNN) algorithm for electroencephalogram
(EEG) artifact. The algorithm combines the universal approximation characteristics of neural networks
and the time/frequency property of wavelet transform, where the neural network was trained on a
simulated dataset with known ground truths. The contribution of this paper is two-fold. First, many
EEG artifact removal algorithms, including regression based methods, require reference EOG signals,
which are not always available. The WNN algorithm tries to learn the characteristics of EOG from
training data and once trained, the algorithm does not need EOG recordings for artifact removal.

Keywords: Second, the proposed method is computationally efficient, making it a reliable real time algorithm. We
El(-:)g compared the proposed algorithm to the independent component analysis (ICA) technique and an

adaptive wavelet thresholding method on both simulated and real EEG datasets. Experimental results
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show that the WNN algorithm can remove EEG artifacts effectively without diminishing useful EEG
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ICA information even for very noisy datasets.

Wavelet thresholding

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

An EEG signal is the recording of neural electrical activities
caused by nerve firings. Typically, EEG signals, carrying informa-
tion about rhythmic activities at different frequency bandwidths
of 6—delta (0.5-4 Hz), 0—theta (4-8 Hz), a—alpha (8-13 Hz),
p—beta(13-30 Hz) and y—gamma (30-50 Hz) [1-3], are recorded
using electrodes placed across the scalp. EEG waveforms are
characterized by three components, including shape, frequency,
and amplitude. Based on those components, useful signatures/
features in brain signals can be extracted by various techniques.
However, EEG recordings are usually contaminated by physiolo-
gical artifacts from various sources, such as eye blinking/move-
ment, heart beating and movement of other muscle groups [4].
Such types of artifacts are mixed together with brain signals,
making interpretation of EEG signals difficult [5].

Eye movement or blinks usually produce large electrical
potentials, generating significant electrooculographic (EOG) arti-
facts in recorded EEG signals. Removal of EOG artifacts is
nontrivial because those artifacts overlap in frequency and time
domains with EEG signals. Fortunately, the effect of EOG artifacts
on EEG signals is found most significantly in low frequency bands
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such as 9, 0 and « [6]. Eye blinking generates spike-like shaped
signal waveforms with their peaks reaching up to 800 puV and
occurs in a very short period of 200-400 ms [7]. Meanwhile,
artifacts generated by eye movement are square-shaped, smaller
in amplitude but last longer in time and concentrate in lower
frequency bands [8].

In recent years, there has been an increasing interest in
applying various techniques to remove ocular artifacts from EEG
signals [4,5,8-13,16-22,44]. The methods for removing EOG
artifacts based on regression have been widely studied
[4,9,11,12,39,44]. Regression methods often assume that the scalp
potential is a linear combination of brain and ocular potentials. By
subtracting propagated EOG from EEG recordings, EEG signals can
be recovered [11]. Regression can also be done in frequency
domain based on the concept that subtraction in the frequency
domain is equivalent to filtering in the time domain. By eliminat-
ing spectral estimates of EOG from EEG recordings, it is possible
to recover the non-contaminated EEG [11]. Both types of regres-
sion methods are off-line and rely on EOG recordings, which are
however, not always available [4,9,17].

Berg and Scherg [13,38] proposed a principle component
analysis (PCA) based technique for removing eye movement
artifacts. This method assumes that each EEG channel recording
is simultaneously generated by multiple sources across the scalp.
By decomposing multiple channel EEG data into principle com-
ponents using PCA, the artifactual sources can be identified and
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removed. Their experiments showed that the PCA based method
outperformed regression based models. However, PCA methods
usually failed to completely separate artifacts from cerebral
activities [14], and the orthogonal assumption for data compo-
nents, which is always required while using PCA, is hardly
satisfied [8]. Independent component analysis (ICA), which was
originally developed for blind source separation (BSS) problems,
has been used as an alternative method for EEG artifact removal
[4,15-17]. ICA usually requires a large amount of data and visual
inspection to eliminate noisy independent components, making
the method time-consuming and not suitable for real-time
applications.

Recently, wavelet analysis has been used as an effective tool
for measuring and manipulating non-stationary signals such as
EEG. Wavelet-based methods, especially the wavelet thresholding
techniques, have received significant attentions for EEG artifact
removal [17-22]. For this class of methods, wavelet coefficients at
low-frequency sub-bands are corrected by some thresholding
functions before signal reconstruction. As an online artifact
removal method, the most important advantage of using this
method for EEG correction is that it does not rely on either the
reference EOG signal or visual inspection. However, its perfor-
mance is not consistent because the method is sensitive to the
selections of wavelet basis and thresholding functions. Thus, an
online method which can remove EOG artifact effectively is still
desirable.

This paper proposes a novel, robust, and efficient Wavelet
Neural Network (WNN) technique to remove EOG artifacts by
combining the approximation capabilities of both wavelet and
neural network methods. In WNN, EOG recordings are not
required once the NN being trained and the WNN algorithm can
perform artifact correction in a single channel data. The method
(1) decomposes the contaminated EEG signals to a set of wavelet
coefficients, (2) passes the coefficients located in low frequency
wavelet sub-bands through a trained artificial neural network
(ANN) for correction and (3) reconstructs a clean version of EEG
signals based the corrected coefficients. We applied the method
to EEG data contaminated by EOG artifacts and compared the
results with those obtained by other state-of-the-art methods
including ICA and a wavelet thresholding method.

The rest of the paper is organized as follows. Section 2 reviews
the related work and the motivation of this paper. Section 3
details the proposed technique. Section 4 describes the datasets
used in this paper and the experiment design. Experimental
results are presented in Section 5. We provide discussions in
Section 6 and conclude this paper in Section 7.

2. Related work
2.1. EEG model

Cerebral signals, recorded by an EEG recording system, result
from neural firing activities. On the other hand, EOG artifacts are
non-cerebral activities spreading over the entire recording scalp
and contaminating the EEG electrode recordings. For that reason,
an EEG recording can be represented as a superposition of a true
EEG signal and some portions of the artifacts. When an EOG
artifact presents, it is assumed that the model for the contami-
nated EEG signal is in the following form [17],

EEGrec(t) = EEGirye(t) + kxEOG(t) (1)

where EEGy(t) is the recorded contaminated EEG, EEG.(t)
denotes the true EEG signal, EOG(t) represents the original

potential changes caused by ocular activities and k symbolizes
the propagated factor and varies between 0 and 1 depending on
the location of the recording electrode. Hence, k+EOG(t) repre-
sents the propagated ocular artifact from the eye to the recording
site, which directly adulterates the brain signals. Estimating
EEGrue(t) from observed EEG,.c(t) is non-trivial and is equivalent
to minimizing the effect of ocular artifacts. Similar to other
artifact removal techniques, the goal of the proposed wavelet
neural network technique is to recover EEGe(t) from EEGec(t).

As a random signal, a true EEG signal owns the noise-like (flat)
power spectrum. In some cases when a subject performs specific
tasks, the biological neural system introduces activities at parti-
cular frequencies making the power spectrum deflated. As a
major artifactual type, once mixed with EEG..(t), the ocular
artifact k«EOG(t) causes proliferation in low frequencies and
generates spike-like shape data segments across time domain.
These properties are utilized by both wavelet thresholding [17]
and the proposed WNN technique for artifact removal.

2.2. Wavelet transform and its application to EOG Artifact removal

2.2.1. Wavelet transform

The wavelet transform [23-26] is a transform in which a set of
basis functions, known as wavelets, are well localized both in
time and frequency domains. Wavelets can be constructed from a
single function ¥/(t), named mother wavelet or analyzing wavelet,
by means of translation and dilation,

1 t—1
lpa,r(t) = ﬁl// (T) (2)

Continuous wavelet transform (CWT) of a signal x(t), defined
as the correlation between the wavelet and the signal itself, can
be implemented by the following formula,

Wia,) = }a [ xowiod 3)

where *(t) denotes the complex conjugate of y(t). The above
Eq. (3) indicates that the wavelet is passed through the analyzed
signal and yields a set of coefficients representing the image of
the analyzed signal at different scales in time and frequency
domains. The scale parameter a plays a crucial role in wavelet
transform. While value of a changes from high to low, the wavelet
is expanded and becomes less sharper in frequency domain.
Accordingly, the low frequency terms can be analyzed with a less
sharper time resolution, which is a useful property especially in
analyzing transient waveforms such as EEG corrupted with ocular
artifacts, where transients occur at low frequency.

Wavelet transform results in a time-scale decomposition in
which scales are basically related to frequency [27]. The highest
scale corresponds to the sharpnest frequencies represented in the
signal (less or equal to half of the sampling rate), and bandwidth
of this scale ranges from a half to a quarter of the sampling rate.
While that bandwith is reduced by two, the number of coeffi-
cients at lower resolution decreases aproximately by a factor
of two compared to that of the higher resolution next to it.
A proper selection of coefficients from different scales may be
used to compress or represent original/corrected signals by using
the inverse formula of Eq. (3). Discrete wavelet transform (DWT)
is the discretized version of wavelet transform applied to discrete
time series, in which parameters a and 7 in Eqs. (2) and (3) can be
represented as a;=2"" and Tij =27, where i and j are positive
integers. Selection of i and j determines properties of mother
wavelet function y(t) = 2" (2~t—j), which constitues an ortho-
normal basis of Hilbert space, consisting of finite—energy signals
[28]. DWT can be implemented with a simple recursive filtering
scheme providing a highly efficient wavelet representation of the
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