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a b s t r a c t

Themin-bisection problem is anNP-hard combinatorial optimization problem. In this paper an equivalent
linearly constrained continuous optimization problem is formulated and an algorithm is proposed for
approximating its solution. The algorithm is derived from the introduction of a logarithmic-cosine barrier
function, where the barrier parameter behaves as temperature in an annealing procedure and decreases
from a sufficiently large positive number to zero. The algorithm searches for a better solution in a
feasible descent direction, which has a desired property that lower and upper bounds are always satisfied
automatically if the step length is a number between zero and one.We prove that the algorithm converges
to at least a local minimum point of the problem if a local minimum point of the barrier problem is
generated for a sequence of descending values of the barrier parameter with a limit of zero. Numerical
results show that the algorithm ismuchmore efficient than two of the best existing heuristic methods for
the min-bisection problem, Kernighan–Lin method with multiple starting points (MSKL) and multilevel
graph partitioning scheme (MLGP).

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Consider an undirected graph G = (V , E), where V =

{1, 2, . . . , n} is the node set of G and E the edge set of G. We denote
by (i, j) an edge between nodes i and j. Let

W =


0 w12 · · · w1n
w21 0 · · · w2n
...

...
. . .

...
wn1 wn2 · · · 0


be a given symmetric weight matrix such that wij > 0 if (i, j) ∈ E
and wij = 0 if (i, j) 6∈ E. Assume that G has an even number of
nodes. The min-bisection problem is to partition V into two sets, S
and V \ S, of equal cardinality such that

w(S) =
∑

i∈S,j∈V\S

wij

is minimized. This problem is an NP-hard problem (Murty &
Kabadi, 1987) and has many applications. A variant of it called the
bisection problemwith k-resource sets can be found in Ishii, Iwata,
and Nagamochi (2007). Due to its computational complexity, the
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min-bisection problem is very difficult to solve to optimality with
an exact algorithm.
The min-bisection problem is to partition a graph into p =

2 parts of equal cardinality, a natural generalization of which is
the case when p ≥ 2, yielding the graph partitioning problem.
This problem has attracted much attention in recent years,
because of its extensive applications in such areas as scientific
computing, VLSI design, etc. According to Karypis and Kumar
(1998), algorithms for graph partitioning are of three major types,
which are spectral partitioning methods (Amin, 2005), geometric
partitioning algorithms, andmultilevel graphpartitioning schemes
with three phases: coarsening, partitioning of the coarsest graph,
and refining (Hendrickson & Leland, 1993). During the past few
decades, meta-heuristics have become popular, among which are
simulated annealing (SA) and evolutionary algorithms (EAs), two
most remarkable algorithms. An application of meta-heuristic
algorithms to the graph partitioning problem can be found in
many literatures. For details, please refer to Bui and Moon
(1996), Gil, Ortega, Diaz, and Montoya (1998), Jerrum and Sorkin
(1998) and Soper, Walshaw, and Cross (2004). In addition, some
software packages such as JOSTLE, METIS, CHACO are available.
In Loiola, Abreu, Boaventura-Netto, Hahn, and Querido (2007),
the graph partitioning problem was formulated as a special case
of the quadratic assignment problem (QAP). Furthermore, with
its speciality in mind, the min-bisection problem has enjoyed
some privileges, theoretical and algorithmic. For details, they are
referred to Saab and Rao (1992) and Feig and Kuauthgamer (2006).
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Neural Networks, since their emergence, have experienced
significant advances in both theory and applications, especially
in optimization, among which combinatorial optimization, due
to Hopfield and Tank (1985), has become a popular topic in the
literature of neural computation. Although initial results were
disappointing, modified network dynamics and better problem
mapping contribute significantly to solution quality (Gee, Aiyer,
& Prager, 1993). Peterson and Soderberg (1989) mapped the
graph partition problem onto a neural network with the graded
neurons encoding, which can reduce the solution space by one
dimension. Gee et al. (1993) presented a problem mapping
evaluation method without recourse to purely experimental
means. Gee and Prager (1994) proposed a rigorous mapping
for quadratic 0–1 programming problems with linear equality
and inequality constraints. After transforming variables with
exponential functions, Urahama (1996) presented an analog solver
for nonlinear programming problems with linear constraints. A
feasible solution constructionmechanismwas introduced inHorio,
Ikeguchi, and Aihara (2005) to improve the performance of
the Hopfield-type chaotic neuro-computer system for quadratic
assignment problems (QAPs). Bout and Miller (1990) and Wu
(2004) applied the mean field annealing (MFA) algorithm for a
solution of the graph bisection problem. Waugh and Westervelt
(1993) introduced a neural network architecture that is applicable
in optimization. By combining deterministic annealing, self-
amplification, algebraic transformations, clocked objectives, and
softassign, an optimizing network architecture was constructed
in Rangarajan, Gold, and Mjolsness (1996). A Hybrid of Lagrange
and transformation approaches (Hybrid LT) was proposed in Xu
(1994) for solving combinatorial optimization problems whose
constraints were separated into linear-constant-sum constraints
and binary constraints and they were, respectively, treated by
Lagrange approach and penalty or barrier functions. Furthermore,
special network models were constructed for the traveling
salesman problem (Aiyer, Niranjan, & Fallside, 1990; Dang &
Xu, 2001; Durbin & Willshaw, 1987; Wacholder, Han, & Mann,
1989; Wolfe, Parry, & MacMillan, 1994). Statistical mechanics
as the underlying theory of optimization neural networks was
studied in Simic (1990). A systematic investigation of such neural
computational models for combinatorial optimization can be
found in Berg (1996) and Cichocki and Unbehaunen (1993). Most
of these algorithms are of deterministic annealing type, which is
a heuristic continuation method that attempts to find the global
minimum of the effective energy at a high temperature and track
it as the temperature decreases. There is no guarantee that the
minimum at a high temperature can always be tracked to the
minimum at a low temperature, but the experimental results are
encouraging (Yuille & Kosowsky, 1994).
In this paper we adapt the idea of deterministic annealing

for approximating a solution of the min-bisection problem. An
equivalent linearly constrained continuous optimization problem
is formulated and an algorithm is proposed for approximating
its solution. The algorithm is derived from the introduction of a
logarithmic-cosine barrier function, where the barrier parameter
behaves as temperature in an annealing procedure and decreases
to zero from a sufficiently large positive number satisfying that the
barrier function is convex. The algorithm searches for a better so-
lution in a feasible descent direction, which has a desired property
that lower and upper bounds are always satisfied automatically if
the step length is a number between zero and one. We prove that
the algorithm converges to at least a local minimum point of the
problem if a local minimum point of the barrier problem is gener-
ated for a sequence of descending values of the barrier parameter
with a limit of zero. Themain differences between the proposed al-
gorithm and existing neural computational models are the barrier
function and the feasible descent direction. Numerical results show

that the algorithm is much more efficient than MSKL and MLGP,
two best existing heuristic methods for the min-bisection or graph
partitioning problem.
The rest of this paper is organized as follows. In Section 2

we formulate an equivalent linearly constrained continuous
optimization problem to the min-bisection problem, introduce a
logarithmic-cosine barrier function, and derive several important
theoretical results. In Section 3 we describe a deterministic
annealing algorithm for approximating a solution of the min-
bisection problem. In Section 4 we present some numerical results
to show that the algorithm is effective and efficient. Finally, we
conclude the paper with some remarks in Section 5.

2. A logarithmic-cosine barrier function

It is clear that the min-bisection problem is equivalent to

min
1
4

n∑
i=1

n∑
j=1

(1− xixj)wij

subject to
n∑
i=1

xi = 0,

xi ∈ {−1, 1}, i = 1, 2, . . . , n.

(1)

Let

ξi = max
1≤j≤n

wji

for i = 1, 2, . . . , n, and ξ = (ξ1, ξ2, . . . , ξn)
>. Then the min-

bisection problem is equivalent to

min f (x) = −
1
2
x>(W + Ξ + αI)x

subject to
n∑
i=1

xi = 0,

xi ∈ {−1, 1}, i = 1, 2, . . . , n,

(2)

where Ξ is the diagonal matrix formed by the components of ξ ,
α any given positive number, and I an n × n identity matrix. A
continuous relaxation of (2) yields

min f (x) = −
1
2
x>(W + Ξ + αI)x

subject to
n∑
i=1

xi = 0,

−1 ≤ xi ≤ 1, i = 1, 2, . . . , n.

(3)

Let

b(x) = −
n∑
i=1

ln cos
(π
2
xi
)
,

which will be used as a barrier term to incorporate −1 ≤ xi ≤ 1,
i = 1, 2, . . . , n, into the objective function. For any given positive
number β , consider

min h(x;β) = f (x)+ βb(x)

subject to
n∑
i=1

xi = 0.
(4)

Let F = {x |
∑n
i=1 xi = 0},

B = {x | −1 ≤ xi ≤ 1, i = 1, 2, . . . , n},

and

int(B) = {x | −1 < xi < 1, i = 1, 2, . . . , n}.

Note that
∂b(x)
∂xi
=
π

2
tan

(π
2
xi
)
.



Download English Version:

https://daneshyari.com/en/article/407368

Download Persian Version:

https://daneshyari.com/article/407368

Daneshyari.com

https://daneshyari.com/en/article/407368
https://daneshyari.com/article/407368
https://daneshyari.com

