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a b s t r a c t

This paper is concerned with the stability analysis problem for a new class of discrete-time recurrent
neural networks with mixed time-delays. The mixed time-delays that consist of both the discrete and
distributed time-delays are addressed, for the first time, when analyzing the asymptotic stability for
discrete-time neural networks. The activation functions are not required to be differentiable or strictly
monotonic. The existence of the equilibrium point is first proved undermild conditions. By constructing a
new Lyapnuov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish
sufficient conditions for the discrete-time neural networks to be globally asymptotically stable. As an
extension, we further consider the stability analysis problem for the same class of neural networks but
with state-dependent stochastic disturbances. All the conditions obtained are expressed in terms of
LMIs whose feasibility can be easily checked by using the numerically efficient Matlab LMI Toolbox. A
simulation example is presented to show the usefulness of the derived LMI-based stability condition.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, recurrent neural networks (RNNs)
have received intensive interest due to their wide applications
in a variety of areas including such as pattern recognition,
associative memory and combinational optimization. Dynamical
behaviors (e.g. stability, instability, periodic oscillatory and chaos)
of the neural networks are known to be crucial in applications.
For instance, if a neural network is employed to solve some
optimization problems, it is highly desirable for the neural network
to have a unique globally stable equilibrium. Therefore, stability
analysis of neural networks has received much attention and
various stability conditions have been obtained.
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Time delay is an inherent feature of signal transmission
between neurons, and becomes one of themain sources for causing
instability and poor performances of neural networks (see e.g. Arik
(2000), Gao, Lam, and Wang (2006) and Gao, Lam, and Chen
(2006)). According to theway it occurs, time-delay can be classified
as two types: discrete and distributed. Discrete time-delay is
relatively easier to be identified in practice and, therefore, stability
analysis for RNNs with discrete delays has been an attractive
subject of research in the past few years. Various sufficient
conditions, either delay-dependent or delay-independent, have
been proposed to guarantee the global asymptotic or exponential
stability for the RNNs, see e.g. Cao and Song (2006), Song and
Cao (2006), Wang, Liu, and Liu (2005) and Wang, Liu, Li, and
Liu (2006) for some recent publications. On the other hand,
due to the presence of an amount of parallel pathways of a
variety of axon sizes and lengths, a neural network usually has a
spatial nature. Therefore, it is necessary to introduce continuously
distributed delays over a certain duration of time such that the
distant past has less influence compared with the recent behavior
of the state (Principle, Kuo, & Celebi, 1994; Tank & Hopfield,
1987). Recently, the global stability analysis problem for general
RNNs with both discrete and distributed delays (or called mixed
time-delays) has received increasing research attention and many
relevant results have been reported in the literature, see e.g. Liu,
Wang, and Liu (2006), Wang et al. (2005, 2006) and the references
therein.
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It should be pointed out that, to date, almost all results concern-
ing dynamics analysis problems for RNNs with mixed time-delays
have been on continuous-timemodels. In implementing and appli-
cations of neural networks, however, discrete-timeneural networks
play a more important role than their continuous-time counter-
parts in today’s digital world. If one wants to simulate or compute
the continuous-timeneural network, it is essential to formulate the
discrete-time analogue so as to investigate the dynamical charac-
teristics (Mohamad & Naim, 2002; Mohamad & Gopalsamy, 2003;
Stuart & Humphries, 1996). In the past few years, various stabil-
ity criteria have been proposed for discrete-time neural networks
(DNNs) in the literature, see e.g. Hu and Wang (2006), Wang and
Xu (2006), Xiong andCao (2005), Yuan, Hu, andHuang (2005), Zhao
andWang (2006) and Zou and Zhou (2006) for DNNs without time
delays and Chen, Lu, and Liang (2006), Liang, Cao, and Lam (2005),
Liang, Cao, and Ho (2005) and Xiang, Yan, and Wang (2005) for
DNNs with discrete time-delays. Note that pioneering work has
been carried out in Mohamad (2008) for preserving exponential
stability in discrete-time analogues of artificial neural networks
with distributed delays.
It has now been well recognized that, in implementations

of neural networks, stochastic disturbances are nearly inevitable
owing to thermal noise in electronic devices. It has also been
shown that certain stochastic inputs could destabilize a neural
network. Therefore, the stability analysis problem for discrete-
time stochastic neural networks with time-delays becomes more
significant from the practical point of view, and initial results
related to this problem has recently been published in Liu, Wang,
and Liu (2007) and the references therein. Unfortunately, so far,
the stability analysis problem for discrete-time stochastic neural
networks with mixed time-delays has not been fully investigated
yet and remains challenging. The major difficulty stems from the
question that how to represent the distributed time-delays in the
discrete-time domain and then establish a unified framework to
handle both the discrete and distributed time-delays. The main
purpose of the present research is to make the first attempt to
shorten such a gap.
In this paper, we study the asymptotic stability problem for

a new class of discrete-time stochastic neural networks with
both discrete and distributed time-delays. We first deal with the
deterministic neural network. The existence of the equilibrium
point is proved under mild conditions on the activation functions,
where neither differentiability nor monotonicity is needed. By
constructing a new Lyapnuov–Krasovskii functional, a linear
matrix inequality (LMI) approach is developed to establish
sufficient conditions for the discrete-time neural networks to
be globally asymptotically stable. As an extension, we then
consider the stability analysis problem for the same class of neural
networks but with state-dependent stochastic disturbances. All
the conditions obtained are expressed in terms of LMIs whose
feasibility can be easily checked by using the numerically efficient
Matlab LMI Toolbox. Note that LMIs can be easily solved by
using the Matlab LMI toolbox, and no tuning of parameters
is required (Boyd, EI Ghaoui, Feron, & Balakrishnan, 1994). A
simulation example is presented to show the usefulness of the
derived LMI-based stability condition.
Notations: The notations are quite standard. Throughout this
paper, Rn and Rn×m denote, respectively, the n-dimensional
Euclidean space and the set of all n × m real matrices. The
superscript ‘‘T’’ denotes matrix transposition and the notation X ≥
Y (respectively, X > Y ) where X and Y are symmetric matrices,
means that X − Y is positive semidefinite (respectively, positive
definite). In symmetric block matrices, we use an asterisk ‘‘∗’’ to
represent a term that is induced by symmetry. For vector ormatrix
z, z � 0 means that each entry of z is nonnegative. In is the
n × n identity matrix. | · | is the Euclidean norm in Rn. If A is a

matrix, denote byλmax(A) (respectively,λmin(A))means the largest
(respectively, smallest) eigenvalue of A. Matrices, if not explicitly
specified, are assumed to have compatible dimensions. Sometimes,
the arguments of a function will be omitted in the analysis when
no confusion can arise.

2. Problem formulation

Consider the following n-neuron discrete-time neural network
with discrete and distributed delays of the form:

ui(k+ 1) = aiu(k)+
n∑
j=1

bij f̂j(uj(k))+
n∑
j=1

cijĝj(uj(k− τ(k)))

+

n∑
j=1

dij
+∞∑
m=1

µmĥj(uj(k−m))+ Jj, i = 1, 2, . . . , n, (1)

or, in an equivalent vector form

u(k+ 1) = Au(k)+ BF̂(u(k))+ CĜ(u(k− τ(k)))

+D
+∞∑
m=1

µmĤ(u(k−m))+ J (2)

where u(k) = (u1(k), u2(k), . . . , un(k))T is the neural state vector,
A = diag{a1, a2, . . . , an} is the state feedback coefficient matrix;
the n× nmatrices B = [bij]n×n, C = [cij]n×n and D = [dij]n×n are,
respectively, the connection weight matrix, the discretely delayed
connection weight matrix and distributively delayed connection
weight matrix. The positive integer τ(k) denotes the time-varying
delay satisfying

τm ≤ τ(k) ≤ τM , k ∈ N, (3)

where τm and τM are known positive integers. In (2), F̂(u(k)) =
[f̂1(u1(k)), f̂2(u2(k)), . . . , f̂n(un(k))]T, Ĝ(u(k)) = [ĝ1(u1(k)),
ĝ2(u2(k)), . . . , ĝn(un(k))]T and Ĥ(u(k)) = [ĥ1(u1(k)),
ĥ2(u2(k)), . . . , ĥn(un(k))]T denote the neuron activation functions.
The constant vector J = [J1, J2, . . . , Jn]T is the exogenous input and
µm(m = 1, 2, . . .) are scalar constants.

Remark 1. Themodel (1) or (2) is quite general and can be seen as
the discrete analog of the following well-studied continuous-time
RNN with mixed time delay:

du
dt
= Au+ BF(u(t))+ CG(u(t − τ(t)))

+D
∫ t

−∞

k(t − s)H(u(s))ds+ J.

The activation functions are usually assumed to be continuous,
differentiable, monotonically increasing and bounded, such as
the sigmoid-type of function. However, in many electronic
circuits, the input–output functions of amplifiers may be neither
monotonically increasing nor continuously differentiable, hence
nonmonotonic functions can be more appropriate to describe the
neuron activation in designing and implementing an artificial
neural network. In this paper, we make following assumptions for
the neuron activation functions.

Assumption 1. For i ∈ {1, 2, . . . , n}, the neuron activation
functions f̂i(·), ĝi(·) and ĥi(·) in (1) or (2) are continuous and
bounded.
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