Neurocomputing 171 (2016) 1-8

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

NEUROCOMPUTING

Neurocomputing

NEUROCOMPUTING
LETTERS

GPU-based real-time terrain rendering: Design and implementation

@ CrossMark

Rui Zhai*, Ke Lu, Weiguo Pan, Shuangfeng Dai

University of Chinese Academy of Science, Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, China

ARTICLE INFO

ABSTRACT

Article history:

Received 11 April 2014
Received in revised form

14 July 2014

Accepted 2 August 2014
Communicated by M. Wang
Available online 24 August 2015

Keywords:

Terrain rendering
GPU-based
Restricted quadtree
Tessellation

Terrain rendering has been a hot spot for many years. How to improve the rendering efficient and get
more smoothing terrain with massive data has become the focus of the terrain rendering research
recently. In this paper, we present a real time rendering algorithm based on GPU (Graphics Processing
Unit) and tessellation technology. In the preprocessing stage, we build two separate restricted quadtree,
logical tree and data-tree. The logical tree is used to reduce the memory usage and logical information is
operated on logical tree. Then we compute the nodes (patch) that are satisfied with LOD (Level of Detail)
and view frustum culling using logical quadtree. This stage is used to minimize nodes passed to GPU to
save GPU memory. To fully use the GPU computational capabilities, we adopt the tessellation technique
in the triangulation stage instead of the traditional triangulation methods. With the tessellation
technique, all the triangulation work is done by the hardware which saves much more rendering time,
and improves the rendering speed highly. In addition, by adjusting the tessellation factor, the terrain
crack is avoided easily. In the experiment, it proves that the method can highly reduce the processing
time and get a feasible result.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Real-time terrain rendering has been a hot spot in computer
graphics for many years, which is widely used in many applica-
tions, such as virtual reality, geo-information system (GIS), flight
simulation and landscape editor.

In past decades, with the increasing size of the digital elevation
models (DEMs), many real-time terrain rendering algorithms have
been built to improve rendering effect [1-3]. Early methods drew
the primitives directly, which were very simply to code but
inefficient. Obviously, this method cannot solve increasing massive
data. To improve computing and rendering ability the computing
ability of GPU and hardware have made rapid progress.

With the development of hardware and GPU, the focus has
shifted from traditional mesh simplification method to hardware-
based programming period. CPU based algorithm has shifted to
GPU or CPU-GPU based algorithm, and the main focus of these
algorithms are different from traditional algorithms. There are
new topics or more options need to be in consideration: Firstly,
take consider of the rendering characteristic computer graphics,
traditional method need to do triangulations manually on the CPU,
but now triangulation is a more flexible option, it can be done
manually or by the software, or it can operate on CPU or GPU.
Same to triangulation, LOD selection is familiar situation, if the

* Corresponding author. Tel.: 486 18810400469
E-mail address: zhairuillb@mails.ucas.ac.cn (R. Zhai).

http://dx.doi.org/10.1016/j.neucom.2014.08.108
0925-2312/© 2015 Elsevier B.V. All rights reserved.

data is small, the data can be passed to GPU totally to select
appropriate LOD layer or culling, if the data is huge, these work
can be done on the CPU to reduce the information passed to GPU.
Lastly, although the GPU calculation ability has made much
progress in the past few years, the algorithms of triangulate mesh
and merge crack between different meshes is still a challenge.

By analyzing the characteristic of GPU rendering pipeline and
quadtree based data structure, we propose a real-time massive terrain
data rendering method in this paper and the experiment shows that
this method is efficient. There are mainly two stages in the frame-
work, CPU stage and GPU stage. In the CPU stage, the LOD selection
and culling is operated to reduce nodes that passed to CPU. In the
GPU stage, we abandon triangulation algorithm which is a major
work in most of the terrain algorithm. The triangulation and crack
avoidance is done by setting the tessellation factor in the GPU
pipeline. The organization of this paper is as follows. The related
work will be described in Section 2. In Section 3, we will give the real
time terrain rendering framework using tessellation technology. The
computing result will be shown in Section 4. Finally, the conclusion
and future work of this paper will be given in Section 5.

2. Related work

Terrain rendering has been studied for many years. In this
section, we will introduce some related real time rendering
methods. Early view-dependent algorithms were based on CPU,

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.08.108
http://dx.doi.org/10.1016/j.neucom.2014.08.108
http://dx.doi.org/10.1016/j.neucom.2014.08.108
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.108&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.108&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.108&domain=pdf
mailto:zhairui11b@mails.ucas.ac.cn
http://dx.doi.org/10.1016/j.neucom.2014.08.108

2 R. Zhai et al. / Neurocomputing 171 (2016) 1-8

Preprocessing Stage(CPU)

Logical Preprocessing (CPU)

Rendering(GPU)

Logical Quadtree View Frustum
(index, height...) Culling

—»

LODSelection [— | VertexShader (—{ Tessellation Stage

Create Two

Load Temain Data Separate QuadTree

Terrain Data

OtherStages |——»| Final Result

(texture...)

Fig. 1. Task scheduling and execution procedure.

according to the different data structures of these algorithms,
these algorithms can be divided into two categories: Regular Grid
based algorithm like Real-Time Optimally Adapting Mesh [1]
(ROAM), and Triangulated Irregular Networks (TINs) based algo-
rithm like Progressive Mesh [2].

TINs based algorithms use irregular triangulated meshes to
represent terrain [4,5]. TINs based data structures store the mesh
relationship, node connection, and information of each point. In
the simplification stage, most traditional methods need adjacent
triangles information, and the triangulation is pre-computed in a
preprocessing stage. For example, De Berg et al. [6] use Delaunay
triangulations to constraint the meshes. Wahl et al. [3]| precom-
pute TINs with object-space error bound, then use compression
techniques to reduce memory and bandwidth requirements of the
triangles. Recently, Hu et al. [7] proposed a new parallel view-
dependent Level of Detail algorithm. This method assigns a value
to each node to guide the node split and collapse algorithm, which
make it possible to execute on GPU.

Another data structure to represent terrain is regular grids like
restricted quadtree [8], bintrees [1,9,10]. Comparing to TINs, the
structure of regular grids is simpler. In most case, the position or
coordinate can be calculated by its index. It is easier to store and
manipulate, and more GPU-friendly. Comparing to TINs, regular
grid based methods are less efficient for general mesh simplifica-
tion, but more suitable for terrain based rendering [11]. Although
regular data structure is easy to handle, most traditional regular
grids based methods, like continuous LOD quadtree [12], restricted
quadtree triangulation [13], 4-8 meshes [14,15], and right-
triangulated irregular networks [9] need complex preprocessing
step to compute triangulation of the regular grid. Later, with the
development of hardware technology and GPU programmability,
more and more GPU-based algorithms have proposed, like BDAM
[16], Geometry clipmaps [17]. Lossaso et al. [18] use the fragment
processor to perform mesh subdivision. Comparing to traditional
CPU based algorithms, rendering speed has made much more
progress. Some researchers combine TINs and regular grid data
structure to make a compromise between flexibility and manage-
ment, in [19], the author adopt popular TINs based mesh simpli-
fication method [20] with regular raw data to find the sensitive
node or patch to display feature sensitive terrain, this work can be
done on GPU. In total, the main improvement of these algorithms
are to design new data structure that more adapt to parallel
management and new framework to improve the use of GPU
memory and buffer. However, most of these algorithms need the
preprocessing stage to compute triangulations and loading during
rendering [21,22].

Traditional GPU pipeline contains vertex shader stage and frag-
ment shader stage. Later, two most commonly graphics APIs: DirectX
and OpenGL introduce geometry shader stage, which makes it
possible to add and destroy points on the GPU. That makes
tessellation can be used in rendering framework [23]. Before the
tessellation is done by the rendering pipeline, many researchers have
studied this problem [24-26]. Most of these works is done manually,
these algorithms are complex and hard to implement with limited

time. Tessellation is so widely used in 3D graphics rendering, DirectX
and OpenGL both add tessellation stage in rendering pipeline to
improve rendering speed and reduce coding complexity. Comparing
to traditional methods, tessellation has many advantages. Firstly,
tessellation supports scalable-rendering techniques, such as contin-
uous LOD or view-dependent LOD which can be calculated on the fly.
Secondly, tessellation technique in DirectX and OpenGL pipeline
supports displacement mapping technology, which can save lots of
memory and bandwidth, makes it possible to rendering more
detailed information. Lastly, current tessellation processing primitive
is patch, same as popular GPU-based LOD rendering method. This
makes it easier to combining current LOD rendering method with
tessellation technology.

From the above introduction, a newly terrain rendering method
based on the tessellation technology is proposed, and better visual
effects can be get with low time consumption. Details of the
algorithm will be shown in the following sections.

3. Algorithm

In this paper, combined with the related newly tessellation
technology, a no programmable triangulation method is proposed
which will highly reduce the time cost in triangulation stage. The
main structure of our algorithms contains the following parts.

3.1. Preprocessing stage

In the preprocessing stage, raw terrain data is converted to
destination format. The initial terrain data is heightmap, which is a
widely used format to store digital terrain information and used in
terrain rendering, bump mapping and displace mapping. But the
raw data is not suitable for current GPU based rendering method.
In order to make full use of the GPU ability and parallel method,
the basic data structure of our algorithms is based on restricted
quadtree, which is optimized to avoid crack and T-junction in
terrain rendering structure.

In our structure, a top-down mesh simplification method is
adopted as shown in Fig. 2. The LOD level begins from level, to
level,_1, levely is the coarsest level, and level,,_; represents the
most detailed resolution terrain. In a quadtree structure, it is easy
to calculate the node index, if the index of node x is k, then the
index of its four children nodes are 4(k+1), 4(k+1)+1, 4(k+1)+2,
4(k+1)+3.

In the memory, two separate but related datasets, the logical
data and non-logical data, are built to minimize the need of the
GPU cache. These two structures share the same framework, but
have different function.

Logical tree is the main tree in processing stage. Logical tree
stores geometry information and logical information, it is used to
guide selecting LOD level and nodes at run time. For each logical
quadtree node, it contains pointer to sons, parent, height informa-
tion, split status, pointer to its corresponding non-logical tree, and
status information. Every node has three statuses: Split, Rendering

Download English Version:

https://daneshyari.com/en/article/407376

Download Persian Version:

https://daneshyari.com/article/407376

Daneshyari.com

https://daneshyari.com/en/article/407376
https://daneshyari.com/article/407376
https://daneshyari.com/

