
Pavlov associative memory in a memristive neural network
and its circuit implementation

Lidan Wang a, Huifang Li a, Shukai Duan a,n, Tingwen Huang b, Huamin Wang a

a School of Electronic and Information Engineering, Southwest University, PO Box 400715, Chongqing, China
b Department of Electrical and Computer Engineering Texas A&M University at Qatar, PO Box 23874, Doha, Qatar

a r t i c l e i n f o

Article history:
Received 25 November 2014
Received in revised form
6 May 2015
Accepted 18 May 2015
Communicated by: He Huang
Available online 30 June 2015

Keywords:
Memristor
Associative memory
Memristive neural network circuit
Average-input-feedback (AIF)

a b s t r a c t

Associative memory is the process by which an association between two stimuli or a behavior and a
stimulus is learned. This paper contributes to propose a memristive neural network and realize the
Pavlov associative memory through (a) putting forward a novel average-input-feedback (AIF) learning
law; (b) proposing a detailed two-terminal charge-controlled SPICE memristor models; (c) building a
memristive neural network (MNN) circuit, for the first time, to realize the Pavlov associative memory.
The results prove the effectiveness of AIF on facilitating the memristor for associative learning in
memristive neural networks.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Memristors, theoretically postulated by Chua in 1971 [1] and
physically developed by William and his team at HP labs in 2008
[2], has received increasing attention from both academic as well
as industrial communities. Till now, people in growing numbers
have applied it to many research fields based on a variety of
characteristics of the memristor [25,23,24,22,7]. The memristor
and synapses share extremely similar characteristics in the aspect
that the memristor can also continue to increase or decrease
the resistance. Therefore, it makes undoubtedly the research on
using memristors to construct artificial neural networks a hot spot
[4–6,9–13,16,20,14].

Since associative memory can be induced in animals and we,
humans, use it extensively in our daily lives, the network of
neurons in brains can execute it very easily. Arguably, the most
famous example of this is the experiment conducted on dogs by
Pavlov [3], which makes people believe such behavior can also be
reproduced in artificial neural networks [17–20]. Pavlov put
forward the concept of unconditioned response through a series
of experimental studies of dogs [3]. For example, the ptyaloreac-
tion result of our putting food into the dog's mouth, is a brain
response; and there is a direct connection between sense of
sensory or hypencephalon and motor nerves. In contrast, for
conditional reflex, when the dogs hear the bell or others which

in the past are neutral stimulus sound, they will emerge saliva
phenomenon. That is the result of formation of new reflection
channel in cerebral cortex when the condition is established.

Meanwhile, Hebbian learning law is ordinarily regarded as an
effective algorithm to achieve the associative learning for a neural
network [8,18]. And we will describe it here again. That is to say, if
two neurons often generate action potentials or trigger (fire)
simultaneously, the connection between two neurons will become
stronger, otherwise weaker. However, it is unfortunate that Heb-
bian learning law cannot be applied to associative correcting. In
fact, during the correcting process, the connection between the
pre-synaptic neuron (ring) and the post-synaptic neuron (saliva-
tion) should become weaker and weaker, but based on Hebbian
learning law, it will become increased. To solve this problem, some
papers presented a new learning law, that is, the max-input-
feedback learning law (MIF law) [20]. In the interesting work [20],
the Pavlov experiment was done to demonstrate the associative
memory process in a memristive artificial neural network (ANN).
Although MIF law can bridge the gap that Hebbian learning law
cannot be used for associative correction, it also has own problem.
It will highlight the maximum stimulating voltage as input signals.
Since only one maximum input can be used by all of the following
process, the network cannot judge whether there is only one
maximum input or several other inputs to form conditional reflex
in the neural network. Furthermore, the neural associative
mechanism will not be able to set up new channels of reflection.

Therefore, in order to solve the above problem, in this paper
the average input feedback law (AIF) is addressed. In addition, we
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will apply this rule to mathematical modeling and circuit simula-
tion of associative memory based on a memristor neural network.

2. The nerve cell model with AIF learning rule

Neuronal model structure is shown in Fig. 1. Firstly, input the
respective average value, which is also the final input value. Then
the corresponding weights are multiplied with input value, and
the product is obtained after processing the final output of the
function output. According to the cell structure, we can build a
mathematical model cell. The main basis of establishing the model
is a multi-input single-output, and it needs some processing
between the output and the input. Proposed AIF rules will be
applied in the model (Fig. 2):

Neuronal space function is

INijðtÞ ¼ OiðtÞ δijðtÞ

UðtÞ ¼

Xn
k ¼ 1

inkðtÞ
n

8>>><
>>>:

ð1Þ

where INij(t) is the input value from pre-synaptic neuron i to the
post-synaptic neuron j; Oi(t) is the output of the pre-synaptic
neuron i; δij(t) is the weight of synapse connecting neuron i and
neuron j; U(t) is the last input value to the neuron; ink(t) is the
k input.

The neuron's working function is

OðtÞ ¼ YOðUðtÞÞ
FðtÞ ¼ GF ðUðtÞÞ

(
ð2Þ

where F(t) is the feedback value of the neuron; YO(U(t)) is the
output function; GF(t) is the feedback function.

The learning law of the synapse is proposed as

ΔδijðtÞ ¼ σ ðOiðtÞ FiðtÞÞ
δijðtþ1Þ ¼ δijðtÞþΔδijðtÞ

(
ð3Þ

where σ is the learning factor; Fi(t) is the feedback value of the
neuron i; Δδij(t) is the modification of synapse weight.We can set
Pij(t) as a work voltage for synapse weight δij(t):

pijðtÞ ¼ OiðtÞ�FiðtÞ ð4Þ

3. A memristor-based MNN model

A memristor is a passive two-terminal electronic device
described by a nonlinear constitutive relation,v¼MðqÞni, between
the device terminal voltage v and the terminal current i. The
nonlinear function M(q) termed the memristance is defined by

MðqÞ ¼ d ðqÞ
dq

ð5Þ

Eq. (5) represents the slope of a scalar function φ¼φ(q) termed
the memristor constitutive relation. The HP memristor model is
shown in Fig. 3.

The HP memristor consists of a thin film (5 nm thick) with one
layer of insulating TiO2 and oxygen-poor TiO2�x each, sandwiched
between platinum contacts. The memristance M of such a device
can be described as

MðwÞ ¼ RON
w
D

� �
þROFF 1

w
D

� �
ð6Þ

And then the following equation is established:

wðtÞ ¼ μv
RON

D
qðtÞþw0 ð7Þ

where μv is the average ion mobility and w0 is the initial state for
state variable w. From Eq. (7), the state of the memristor begins to
move from w0 with the charge supplied to the memristor. How-
ever, the memristor state has a physical constraint, namely 0rw
(t)/Dr1. Note that the memristance is governed by the charge (or
flux) through the device, which works normally forMA[RON, ROFF];
and beyond this range its nonlinearity will degenerate to be linear.
The internal memristor state corresponds to the following effec-
tive charge range: q(t)A[Qmin, Qmax]. Specifically

Qmin ¼
w0D
μvRON

AND

Qmax ¼
ðDw0Þd
μvRON

ð8Þ

Therefore, the following equation is obtained:

xðtÞ ¼wðtÞ
D

¼ l qðtÞþx0 ð9Þ

where x0¼w0/D,l¼ μvðRON=D
2Þ.

From (6) and (8), one can obtain the linear model of the
memristor:

MðtÞ ¼
ROFF ; qðtÞrQmin

Mð0Þþη qðtÞ; QminoqðtÞoQmax

RON ; qðtÞZQmax

8><
>: ð10Þ

where η¼ ðRON�ROFF Þnl:
Because the memristor has the characteristics of memory, it

will keep the properties under the discrete-time voltage.
The discrete form of Eq. (6):

MðtþΔtÞ ¼
MðtÞ ¼ ROFF ; qðtÞrQmin

MðtÞþηnΔqðΔtÞ; QminoqðtÞoQmax

MðtÞ ¼ RON ; qðtÞZQmax

8><
>: ð11Þ
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Fig. 1. The neuron structure.
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Fig. 2. The learning law of the synapse.

Fig. 3. The HP memristor model.
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