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a b s t r a c t

In this paper, the global synchronization problem of switched complex dynamical networks (SCDNs)
with stochastic disturbances is investigated. Different from the existing results concerning synchroniza-
tion of switched complex networks, all the subnetworks of the SCDNs here are not self-synchronized.
Based on the dwell time approach and the discretized Lyapunov function technique, a sufficient
synchronization criterion is obtained in term of linear matrix inequalities (LMIs) and the corresponding
switching signal is obtained. The obtained switching signal depends on time rather than the system
states, which makes it easier to be implemented. Finally, two examples are provided to illustrate the
effectiveness of the theoretical results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, a strong upsurge of the study of complex
networks has been witnessed in many fields of science, engineering
and society [1–6]. Complex networks can exhibit many interesting
phenomena, such as spatio-temporal chaos, synchronization, spiral
waves, self-organization [7–9]. As the major collective behavior of
complex networks, synchronization is one of the key issues that has
been extensively investigated [10–14].

In practice, complex dynamical networks may be affected more or
less by uncertainties such as unmodeled dynamics, link failure and
new link creation that may happen at times [15]. And then the jumps
between different topologies happen occasionally, for example,
biological neural networks [16], flying object motions [16], power
grid [17,18], and so on. As is well known, a large power grid
consisting of a large number of local power generators can work
properly only if the generators are kept in synchronism, and need to
retain their stability to provide normal power supplies. If some local
power generators cannot be synchronized, it may lead to instability
of the power grid or collapse. Therefore, when a local power system
happens to have a severe fault, it will be automatically cut off from

the network by a relay protection device in order to avoid further the
damage to the global power grid. It means that the topology
structures switch from one to another [17,18]. Therefore, it is
important to consider the switching networks when modeling the
complex networks. Recently, synchronization of SCDNs has been a
hot research issue, and various SCDNs have been proposed [7,17–24].
For example, in [19], synchronization of discrete time neural net-
works with node switching was addressed. In [17], exponential
synchronization problem was investigated for a class of complex
delayed dynamical networks with switching topology. In [7,20–24],
synchronization of complex networks with both node and topology
switching was studied.

With respect to the synchronization of SCDNs, two main
problems have been investigated in the literature: (1) Developing
synchronization conditions for the SCDNs under arbitrary switch-
ing signals; (2) Identifying the controlled switching signals under
which the SCDNs can be synchronized. In regard to the first issue,
recently, many significant results have been reported [25–27,18].
For example, in [18], synchronization problem for complex
dynamical networks with switching topology was transformed
into the stability problem for time-varying switched system and a
common Lyapunov function was constructed. It is implied that
the complex networks in [18] are synchronized under arbitrary
switching signals. On the other hand, as is well known, even
when all the subnetworks are self-synchronized, the whole
network may fail to preserve synchronization under arbitrary
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switching [17]. Therefore, it is of great significance to investigate
the second problem, i.e., how to design the switching signal such
that the complex networks with such switching signal can be
synchronized. In the past decade, some useful methods have
been proposed to design switching signals, for example, in [28],
by using the maximal dwell time length of subnetworks and the
average dwell time approach, stability of switched stochastic
neural networks was investigated; In [17], by using the ratio of
the total activation time of self-synchronized subnetworks and
non-synchronized subnetworks, exponential synchronization of
complex delayed dynamical networks with switching topology
was addressed. However, in the above results, it is implicitly
assumed that there exists at least one subsystem that is self-
synchronized.

Due to disturbances, unmodeled dynamics or possible faults,
some modes may be unstable in a given switched system [29]. As is
well known, even if all subsystems are unstable, one may carefully
orchestrate switching between unstable modes to make the
switched system asymptotically stable [30,31]. Therefore, how to
design appropriate switching signals to stabilize the switched
system composed fully of unstable modes is very interesting. In
the past decade, how to design the appropriate switching laws to
stabilize the switched system composed of unstable subsystem has
been discussed in [32–34]. This implies that the switching law plays
a good role in synchronization under some circumstances.
Although, the stability of switched systems with unstable subsys-
tems has been investigated in [32–34]. However, synchronization
problem of switched complex networks with non-synchronized
subnetworks has received relative little attention primarily due to
the coexistence of the coupling terms and the switching signals
[18]. In [18], when all subnetworks are not self-synchronized,
synchronization of the SCDNs was studied by designing restricted
switching law depending on the state of nodes. But, in [18], the
node switching was neglected and the coupled matrix is assumed
to be simultaneous triangularization. Moreover, in [18], the switch-
ing law depends on the states, which is hard to be implemented. In
this paper, we consider more general switching, e.g., both node and
topology switching. Moreover, the considered switching signal only
depends on time rather than system states.

On the other hand, when signals transmit between dynamical
nodes, the state of each individual node is often subjected to various
types of noise, uncertainty from external random fluctuations in the
process of transmission and other probabilistic causes, which may
lead information to be lost. These undesired phenomena may have a
great influence on the behavior of dynamical networks [35]. There-
fore, when investigating and simulating more realistic networks, it is
important to take stochastic perturbations into account. In addition,
the stochastic disturbances could better describe the dynamical
behavior of a coupled complex network presented within a noisy
environment [36]. Recently, synchronization of complex dynamical
networks with stochastic perturbations has been extensively inves-
tigated in the literatures [35,37–39]. In [35], synchronization was
investigated for a class of delayed complex dynamical networks with
impulsive and stochastic effects. In [39], distributed robust synchro-
nization was investigated for a class of dynamical networks with
stochastic coupling. However, to the best of the authors’ knowledge,
the synchronization problem for complex networks with both
switching and stochastic perturbations, in which all subnetworks
are not self-synchronized, has not been fully investigated.

Motivated by the above discussions, in this paper, the synchroni-
zation problem is investigated for a class of SCDNs with non-
synchronized subnetworks. Based on the dwell time approach and
the discretized Lyapunov function technique, a synchronization
criterion for such complex dynamical networks is obtained in terms
of LMIs. The main contributions of this paper can be listed as follows:
Eq. (1) all the subnetworks of the SCDNs are not self-synchronized;

Eq. (2) the switching signals only depend on time rather than the
state of nodes, which are easy to be physically implemented; Eq. (3)
the effects of both switching and stochastic perturbations are
simultaneously considered.

Notations: Throughout this paper, N and Rn denote, respec-
tively, the set of nonnegative integers and the n-dimensional
space. Rm�n denote m� n real matrix. For vector xARn, jxj and
xT denote, respectively, the Euclidean norm and its transpose. We
use λmaxð�Þ (respectively λminð�Þ) to denote the maximum (respec-
tively the minimum) eigenvalue of a real matrix. The notation
ArB (respectively AoB) means that the matrix A�B is negative
semidefinite (respectively negative definite). In is the identity
matrix of order n.

2. Model and preliminaries

In this section, we first present the network model, then some
basic lemmas, definitions and assumptions are given.

Consider the following SCDNs with stochastic disturbances:

d½xiðtÞ� ¼ ½CσðtÞxiðtÞþBσðtÞf σðtÞðxiðtÞÞþϑ
XN
j ¼ 1

aσðtÞij ΓσðtÞxjðtÞ� dt

þgσðtÞðt; xiðtÞÞd½wðtÞ�; i¼ 1;2;…;N ð1Þ

where ϑ is the coupling strength; wðtÞ ¼ ½w1ðtÞ;w2ðtÞ;…;wnðtÞ�T is
an n-dimensional Weiner process, and wi(t) is independent of wj(t)
for ia j. σðtÞ : ½0;1Þ-M¼ f1;2;…;mg is the switching signal,
which is a piecewise constant function continuous from the right.
For each fixed σðtÞ ¼ rAM, CrARn�n is a real matrix; BrARn�n

represents the connection weight matrix; f rðxiðtÞÞ is the activation
function, and gr : R

þ � Rn-Rn�n is the noise intensity function
matrix. ΓrARn�n40 is the diagonal inner coupling matrix which
represents the way of linking the components in each pair of
connected two nodes; ArARN�N is the outer coupling configura-
tion matrix which represents the structure of the network in
which aij

r is defined as follows: if there is a connection from node j
to node i (ja i), then arija0; otherwise, arij ¼ 0. The diagonal entries
of matrix aii

r are determined by the following coupling condition:

arii ¼ �
XN

j ¼ 1;ja i

arij; i¼ 1;2;…;N; rAM: ð2Þ

Let xðtÞ ¼ ½xT1ðtÞ; xT2ðtÞ;…; xTNðtÞ�T . FrðxðtÞÞ ¼ ½f Tr ðx1ðtÞÞ; f Tr ðx2ðtÞÞ;…;

f Tr ðxNðtÞÞ�T , Grðt; xðtÞÞ ¼ ½gTr ðx1ðtÞÞ; gTr ðx2ðtÞÞ;…; gTr ðxNðtÞÞ�T , ΩðtÞ ¼ ½wT

ðtÞ; wT ðtÞ;…;wT ðtÞ�T . For a clear presentation, here we let

CN
r ¼ IN � Cr , BN

r ¼ IN � Br , Ar ¼ Ar � Γr , Then, the SCDN in Eq.
(1) can be rewritten in the following Kronecker product form:

d½xðtÞ� ¼ ½CN
r xðtÞþBN

r FrðxðtÞÞþϑArxðtÞ�dtþGrðt; xðtÞÞd½ΩðtÞ�: ð3Þ

Remark 1. Due to disturbances, unmodeled dynamics or possible
faults, all subnetworks may not be synchronized in a given
switched complex network [18,29,40]. Therefore, in this situation,
it is interesting to investigate how to tolerate the existence of non-
synchronized subnetworks without destroying synchronization of
the overall networks. Recently, the synchronization problems for
SCDNs with non-synchronized subnetworks have been investi-
gated in [7,17,18]. However, in the existing results concerning
synchronization of SCDNs, it is implicitly assumed that there exists
at least a subnetwork that is self-synchronized [7,17,20,25–27]. In
this paper, we consider the SCDNs in Eq. (1) where all the
subnetworks are not self-synchronized.

In order to derive the main results of this paper, we need the
following assumptions, definitions and lemmas.
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