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a b s t r a c t

Diagonal principal component analysis (DiaPCA) is an important method for dimensionality reduction
and feature extraction. It usually makes use of the ℓ2-norm criterion for optimization, and is thus
sensitive to outliers. In this paper, we present a DiaPCA with non-greedy ℓ1-norm maximization
(DiaPCA-L1 non-greedy), which is more robust to outliers. Experimental results on two benchmark
datasets show the effectiveness and advantages of our proposed method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Principal component analysis (PCA) is a classical tool for feature
extraction and face recognition [1]. In the domain of image
analysis, two-dimensional PCA (2DPCA) [2] and diagonal PCA
(DiaPCA) [3] were developed to capture spatial information. The
rationale behind 2DPCA is to select computational “samples” from
the row vectors of an image, instead of the vector stacked by the
whole image pixels in PCA [4,5]. In contrast to 2DPCA, DiaPCA
seeks the optimal projective vectors from the row vectors of
diagonal images, which makes DiaPCA better than 2DPCA in many
aspects [3,6–8]. It is noteworthy that the algorithms including PCA,
2DPCA and DiaPCA make use of the ℓ2-norm for optimization [9].
Although the ℓ2-norm is optimal for the case of independent and
identically distributed (i.i.d.) Gaussian noise but not robust to
outliers [10,11]. Owing to this intrinsic drawback, the methods
mentioned above are all sensitive to outliers.

Some recent methods including L1-PCA [12], R1-PCA [13] and
PCA-L1 [14] attempt to attenuate this sensitivity by adopting the ℓ1-
norm, which is known more robust to outliers than the ℓ2-norm.
Among them, PCA-L1 is attractive for being robust to outliers and
having a relatively low computational complexity. By referring to
the techniques of PCA-L1, 2DPCA-L1 was proposed and validated
with competitive performance in many computer vision problems
[15]. Since it is difficult to directly solve the ℓ1-norm maximization

problem, PCA-L1 and 2DPCA-L1 resort to greedy strategies in order
to optimize all projection vectors sequentially. However, the projec-
tion vectors are prone to being struck in local solutions.

Recently, a PCA with non-greedy ℓ1-norm maximization (PCA-
L1 non-greedy) was developed by Nie et al. [16]. Compared with
PCA-L1, it optimized all projection vectors simultaneously, and
thus effectively avoids the projection vectors being struck in local
solutions. In this paper we propose a DiaPCA with non-greedy ℓ1-
norm maximization, termed as DiaPCA-L1 non-greedy, for face
recognition. This method has three major advantages: (1) it is
more robust to outliers than the ℓ2-norm based methods; (2) it
shares the advantage of DiaPCA in preserving image characteris-
tics; and (3) it directly deals with the ℓ1-norm maximization
problem and optimizes all projection vectors simultaneously.

The rest of this paper is organized as follows: Section 2 gives an
introduction to DiaPCA and the representation of diagonal image
preprocessing technique. The DiaPCA-L1 non-greedy is elaborated
in Section 3. Section 4 reports all experimental results, and
conclusions are finally drawn in Section 5.

2. Brief review of DiaPCA

In DiaPCA, the original images are firstly transformed into the
corresponding diagonal images. Similar to 2DPCA, the diagonal
covariance matrix is defined based on the diagonal images. Then
the eigen-decomposition is utilized to obtain the optimal projec-
tion vectors.
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Suppose that there are n training images, denoted by
Ai; i¼ 1;2;…;n. The size of the matrix Ai is h�w, where h and
w are the image height and width, respectively. For each training
image, the corresponding diagonal image was defined as follows:

1. If the width w is equal to or bigger than the height h, the
technique illustrated in Fig. 1(a) is utilized to generate the
diagonal image B for the original image A.

2. If the width w is smaller than the height h, the technique
illustrated in Fig. 1(b) is utilized to generate the diagonal image
B for the original image A.

A further representation of the diagonal image preprocessing
technique mentioned above in DiaPCA has been introduced by Lu
and Tan [8]. It is shown that transforming an image to its diagonal
one is equivalent to assigning an appropriate weight to each pixel
to emphasize its different importance. Thus, the diagonal image
can also be obtained by multiplying the corresponding pixel in the
original image with a positive weight, namely

B¼ A � T ; ð1Þ

where T is the weighting matrix, “�” denotes element-wise
multiplication and B is the diagonal image matrix.

Furthermore, if wZh,
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Fig. 2 shows five original images, the corresponding diagonal
images and weighting matrices. It is shown that the weighting
matrices T applies different weights for pixels around texture or
edge regions on the original images. For example, some important
parts such as eyes and eyebrows are assigned with bigger weights,
while the other regions are assigned with smaller ones. According
to the weighting representation, DiaPCA can be regarded as
weighted 2DPCA and the weighting matrix emphasizes the impor-
tance of different face parts for recognition [8].

Without loss of generality, assume that the image width w is
equal to or bigger than the image height h. Then, for each image Ai,
the corresponding diagonal image Bi is obtained with the techni-
que illustrated in Fig. 1(a) or (1).

Let X iARh�w; i¼ 1;…;n, denote all diagonal images. The diag-
onal covariance matrix is defined as

G¼ 1
n

Xn

i ¼ 1

ðX i�X ÞT ðX i�X Þ; ð4Þ

where X ¼ 1
n

P
X i. The eigenvectorsω1;ω2;…;ωl corresponding to

the l largest eigenvalues are obtained by using the eigen-
decomposition on G.
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Fig. 1. Two techniques of deriving the diagonal images. (a) Image width is equal to or bigger than image height. (b) Image width is smaller than image height.
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