
A new deep neural network based on a stack of single-hidden-layer
feedforward neural networks with randomly fixed hidden neurons

Junying Hu, Jiangshe Zhang n, Chunxia Zhang, Juan Wang
School of Mathematics and Statistics, Xi'an Jiaotong University, China

a r t i c l e i n f o

Article history:
Received 29 January 2015
Received in revised form
9 June 2015
Accepted 9 June 2015
Communicated by S. Mitra
Available online 2 July 2015

Keywords:
Single-hidden layer feedforward neural
network
Manifold regularization
Unsupervised learning
Embedding
Stackable structure

a b s t r a c t

Single-hidden layer feedforward neural networks with randomly fixed hidden neurons (RHN-SLFNs)
have been shown, both theoretically and experimentally, to be fast and accurate. Besides, it is well
known that deep architectures can find higher-level representations, thus can potentially capture
relevant higher-level abstractions. But most of current deep learning methods require a long time to
solve a non-convex optimization problem. In this paper, we propose a stacked deep neural network, St-
URHN-SLFNs, via unsupervised RHN-SLFNs according to stacked generalization philosophy to deal with
unsupervised problems. Empirical study on a wide range of data sets demonstrates that the proposed
algorithm outperforms the state-of-the-art unsupervised algorithms in terms of accuracy. On the
computational effectiveness, the proposed algorithm runs much faster than other deep learning
methods, i.e. deep autoencoder (DA) and stacked autoencoder (SAE), and little slower than other
methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Single-hidden layer feedforward networks (SLFNs) have been
intensively studied during the past several decades. However,
most of the existing learning algorithms for training SLFNs
basically introduce high computational cost. Recently, Huang
et al. [1] proposed the extreme learning machines (ELMs) for
training SLFNs, which construct the hidden layer using a fixed
number of randomly generated mapping neurons and analytically
determines the output weights of SLFNs by minimizing the sum of
the squared losses of the prediction errors. It has been shown that
ELMs are much more efficient and usually lead to better general-
ization performance than traditional methods for SLFNs.

Actually, the idea of ELMs that hidden neurons are randomly
assigned and the output weights only need to be trained for a SLFN
has been introduced by other researchers in the early stages. For
example, Schmidt et al. [2] introduced feedforward neural net-
works with random weights where the weights of hidden layer
(s) were chosen randomly, whereas the output layer trained by a
single layer learning rule or a pseudo-inverse technique. The
minor difference is that the bias of the output neuron in ELM is
set to zero, while the bias of the output neuron in [2] is not set to
zero. However, there is nothing preventing the bias of the output

neuron in [2] to assume a zero value. Pao et al. [3] proposed the
random vector function-link network (RVFL) where the hidden
neurons in an function-link neural network (FLN) were randomly
selected and only the weights of the output layer needed to be
trained, with the only difference from the ELMs being that RVFL
allows for direct connections from the input nodes to the output
neurons, whereas the ELM dose not. Another related work is radial
basis function (RBF) neuron networks with randomly selected RBF
centers and suitably selected RBF width which is proposed by
Broomhead and Lowe in their classic paper [4,5]. We can see that
RBF network in [4,5] is a minor variation of traditional RBF
network, since Park and Sandberg [6] proved that RBF networks
with either the same width for all RBF neurons in the network or
different widths for different RBF neurons in the network are
universal approximators. Actually, Huang et al. [7–9] have stated
the differences between ELMs and other related works. Mean-
while, Hornik [10] showed that a single hidden layer feedforward
network with arbitrary bounded and nonconstant activation
function are universal approximation. Based on the above dis-
cussed, we refer the above all sorts of SLFNs as SLFNs with
randomly fixed hidden neurons (RHN-SLFNs).

Motivated by unsupervised extreme learning machines [11]
which extending ELM for unsupervised tasks based on the mani-
fold regularization and the great success of deep learning [12,13],
we propose deep neural network using a stack of unsupervised
RHN-SLFNs (St-URHN-SLFNs). The proposed model not only incor-
porates the simplicity of RHN-SLFNs but also possesses the power
derived from deep architectures. The proposed St-URHN-SLFNs is a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.06.017
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: hujunyingmm@163.com (J. Hu),

jszhang@mail.xjtu.edu.cn (J. Zhang), cxzhang@mail.xjtu.edu.cn (C. Zhang),
Wangjuan03022204@163.com (J. Wang).

Neurocomputing 171 (2016) 63–72

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.06.017
http://dx.doi.org/10.1016/j.neucom.2015.06.017
http://dx.doi.org/10.1016/j.neucom.2015.06.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.06.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.06.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.06.017&domain=pdf
mailto:hujunyingmm@163.com
mailto:jszhang@mail.xjtu.edu.cn
mailto:cxzhang@mail.xjtu.edu.cn
mailto:Wangjuan03022204@163.com
http://dx.doi.org/10.1016/j.neucom.2015.06.017


simple stack of unsupervised RHN-SLFNs's, namely, utilizing
unsupervised RHN-SLFNs as the base building block. Like the
greedy, layer-by-layer unsupervised learning algorithm introduced
by Hinton et al. [14], the proposed algorithm consists of learning a
stack of unsupervised RHN-SLFNs one layer at a time. After the
stack of the base building block, the whole stack can be viewed as
a single deep neural network model, called a St-URHN-SLFN. We
test our algorithms on a variety of data sets and the results show
that the proposed algorithms outperform the unsupervised RHN-
SLFNs algorithm and other state-of-the-art algorithms in terms of
accuracy. On the computational effectiveness, the proposed algo-
rithm runs much faster than deep autoencoder (DA) and stacked
autoencoder (SAE), and little slower than other methods.

The rest of the paper is organized as follows. In Section 2 we
give a brief review of RHN-SLFNs and manifold regularization.
Section 3 gives a brief review of unsupervised RHN-SLFNs.
Section 4 introduces the basic model structure of St-URHN-SLFNs
and gives specific algorithm description. Section 5 presents
experimental results. Section 6 concludes this paper.

2. Preliminaries

In this section, in order to have a better understanding of
unsupervised RHN-SLFNs, RHN-SLFNs and manifold regularization
framework are introduced.

2.1. Introduction of RHN-SLFNs

RHN-SLFNs is the simplest kind of neural network. It consists of
three layers: an input layer, a hidden layer and an output layer. The
output of each hidden unit is determined by forming a weighted
sum of unit values in the input layer and then passing this result
through an arbitrary bounded and nonconstant function which is
usually a sigmoidal function or Gaussian function (we use sigmoi-
dal function, e.g. gðxÞ ¼ 1=ð1þe� xÞ, in this paper). The output of
each output unit is a weighted sum of unit values in the hidden
layer. For presentation purpose, we give the following explanation
of symbols.

� ni: the number of input units;
� no: the number of output units;
� nh: the number of hidden units;
� Wni�nh : the input weights between the input layer and the
hidden layer which is ni � nh matrix;

� b: the biases of hidden units;
� β: the output weights between the hidden layer and the output
layer which is nh � no matrix.

The basic idea for training RHN-SLFNs is very simple, which
only needs to update the output weights β by adopting the
squared loss of the prediction error, while the parameters, i.e.,
the input weights W and biases of the hidden layer b, are
randomly generated. For N training samples fX;Yg ¼ fxi; yigNi ¼ 1,
where xiARni , yi is a no-dimensional binary vector with only one
entry (correspond to the class that xi belongs to) equal to one for
multiclassification tasks, or yiARno for regression tasks, the
mathematical model for training RHN-SLFNs is as follows:

min
βARnh�no

1
2
JβJ2þC

2

XN
i ¼ 1

Jei J2;

s:t: hðxiÞβ¼ yTi �eTi ; i¼ 1;…;N; ð1Þ

where hðxiÞ ¼ gðxiWþbÞ is the output vector of the hidden layer
with respect to xi, eiARno is the error vector with respect to the ith

training sample, C is a penalty coefficient on the training errors.
The model structure of RHN-SLFNs is shown in Fig. 1.

We substitute the constraints into the objective function to
obtain the following equivalent unconstrained optimization pro-
blem:

min
βARnh�no

1
2
JβJ2þC

2
JY�HβJ2 ð2Þ

where H ¼ ½hðx1ÞT ;…;hðxNÞT �T ARN�nh .
In order to get the optimal solution of the above problem, we

set the gradient of the above objective function with respect to β
to zero and obtain the following equation:

β�CHT ðY�HβÞ ¼ 0 ð3Þ
The solution of the above Eq. (3) is discussed in two cases.

When the number of training patterns is larger than the number of
the hidden neurons, H has more rows than columns. In this case,
Eq. (3) is overdetermined, and we obtain the following closed form
solution for (2):

βn ¼ HTHþInh

C

� ��1

HTY ð4Þ

where Inh
is an identity matrix of dimension nh.

When the number of training patterns is smaller than the
number of hidden neurons, H will have more columns than rows.
In this case, the above Eq. (3) is underdetermined and β may have
infinite number of solutions. To solve the problem, we introduce
additional constraints to β : β¼HTα ðαARN�no Þ. Notice that when
H has more columns than rows and is row full rank, then HHT is
invertible. Both sides of (3) are multiplied by ðHHT Þ�1H, we get

α�CðY�HHTαÞ ¼ 0 ð5Þ
Then the solution for (2) is given by

βn ¼HTαn ¼HT HHT þIN
C

� ��1

Y ð6Þ

where IN is an identity matrix of dimension N.
Based on the above discussion, we summarized the algorithm

for training RHN-SLFNs as Algorithm 1.

Algorithm 1. Training algorithm of RHN-SLFNs.

Input:
Labeled patterns, fX;Yg ¼ fxi; yigNi ¼ 1;

output:
The mapping function: f : Rni-Rno ;
Step 1: Initiate an RHN-SLFNs of nh hidden neurons with
random input weights and biases.
Step 2:
� If nhrN

Fig. 1. Initializing the inputweights W and the biases of hidden layer b at random, the
output of hidden layer hðxiÞ can be computed by hðxiÞ ¼ gðxiWþbÞ; i¼ 1;2;…;N.
Then we can gain the outputweights β by solving (1).

J. Hu et al. / Neurocomputing 171 (2016) 63–7264



Download English Version:

https://daneshyari.com/en/article/407383

Download Persian Version:

https://daneshyari.com/article/407383

Daneshyari.com

https://daneshyari.com/en/article/407383
https://daneshyari.com/article/407383
https://daneshyari.com

