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a b s t r a c t

The idea of meta-cognitive learning has enriched the landscape of evolving systems, because it emulates
three fundamental aspects of human learning: what-to-learn; how-to-learn; and when-to-learn. However,
existing meta-cognitive algorithms still exclude Scaffolding theory, which can realize a plug-and-play
classifier. Consequently, these algorithms require laborious pre- and/or post-training processes to be
carried out in addition to the main training process. This paper introduces a novel meta-cognitive
algorithm termed GENERIC-Classifier (gClass), where the how-to-learn part constitutes a synergy of
Scaffolding Theory – a tutoring theory that fosters the ability to sort out complex learning tasks, and
Schema Theory – a learning theory of knowledge acquisition by humans. The what-to-learn aspect
adopts an online active learning concept by virtue of an extended conflict and ignorance method,
making gClass an incremental semi-supervised classifier, whereas the when-to-learn component makes
use of the standard sample reserved strategy. A generalized version of the Takagi-Sugeno Kang (TSK)
fuzzy system is devised to serve as the cognitive constituent. That is, the rule premise is underpinned by
multivariate Gaussian functions, while the rule consequent employs a subset of the non-linear
Chebyshev polynomial. Thorough empirical studies, confirmed by their corresponding statistical tests,
have numerically validated the efficacy of gClass, which delivers better classification rates than state-of-
the-art classifiers while having less complexity.

Crown Copyright & 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

The consolidation of the meta-cognitive aspect in machine
learning was initiated by Suresh et al. [7–11] based on a prominent
meta-memory model proposed by Nelson and Naren [6]. The
works in [7–11] identify that the meta-cognitive component,
namely what-to-learn, how-to-learn and when-to-learn, can respec-
tively be modelled with sample deletion strategy, sample learning
strategy and sample reserved strategy. Nevertheless, their pioneer-
ing works still discount the construct of Scaffolding theory [12,22],
rendering a plug-and-play classifier. They have also not addressed
the issue of semi-supervised learning, since the what-to-learn
phase requires the data to be fully labelled.

A novel meta-cognitive-based Scaffolding classifier, the
GENERIC-classifier (gClass), is proposed in this paper. The gClass
learning engine comprises three elements: what-to-learn; how-
to-learn; and when-to-learn. The underlying novelty of gClass lies
on the use of Schema and Scaffolding theories in the how-to-learn

component to realize it as a plug-and-play classifier. The plug-and-
play learning paradigm emphasizes the need for all learning
modules to be embedded in a single learning process without
invoking any pre- and/or post-training processes. In respect of its
cognitive constituent, the gClass fuzzy rule triggers a non-axis-
orthogonal fuzzy rule in the input space, underpinned by the
multivariate Gaussian function rule premise. Unlike the standard
form of TSK fuzzy rule consequents, the rule consequent of gClass
is built upon a non-linear function stemming from a subset of non-
linear Chebyshev polynomials. All training mechanisms run in the
strictly sequential learning mode to assure fast model updates and
comply with the four principles of online learning [32]: (1) all
training observations are sequentially presented one by one or
chunk by chunk to gClass; (2) only one training datum is seen and
learned in every training episode; (3) a training sample which has
been seen is discarded without being reused; and (4) gClass does
not require any information pertaining to the total number of
training data.

The gClass learning scenario utilizes several learning modules
of our previous algorithms in [18,19]: three rule growing cursors,
namely Datum Significance (DS), Data Quality (DQ), and General-
ized Adaptive Recursive Theoryþ (GARTþ), are used to evolve
fuzzy rules according to the Schema theory [14]; two rule pruning
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strategies, namely Extended Rule Significance (ERS) and Potential
(Pþ) methods, are assembled to get rid of obsolete and inactive
fuzzy rules and portray the fading aspect of Scaffolding theory. The
Pþ method also deciphers the rule recall process, manifesting the
problematizing component of Scaffolding theory to cope with the
recurring concept drift; the Fuzzily Weighted Generalized Recur-
sive Least Square (FWGRLS) method is integrated to adjust the rule
consequent of the fuzzy rule and in turn delineates the passive
supervision of the Scaffolding theory. gClass operates as its
counterparts in [7–11], where the sample reserved strategy is
employed in the when-to-learn process. Nonetheless, several new
learning modules are proposed in this paper:

� The what-to-learn component is built upon a new online active
learning scenario, called the Extended Conflict and Ignorance
(ECI) method. The ECI method is derived from the conflict and
ignorance method [2], and the ignorance method is enhanced
by the use of the DQ method instead of the classical rule firing
strength concept. This modification makes the online active
learning method more robust against outliers and more accu-
rate in deciding the sample ignorance. Note that this mechan-
ism can be also perceived as an enhanced version of the
original what-to-learn module in [7–11]. In [7–11], the what-
to-learn module is limited to ruling out redundant samples for
model updates, and still assumes that data are fully labelled.

� A new fuzzy rule initialization strategy is proposed and is
constructed by the potential per-class method. This method is
used to avoid misclassifications caused by the class overlapping
situation. A number of research efforts have been attempted in
[7–10,69-71] to circumvent the class overlapping situation,
however they rely on the distance ratio method, which over-
looks the existence of unclean clusters. An unclean cluster is a
cluster that contains supports from different classes and is
prevalent in real world-problems. This learning aspect actua-
lizes the restructuring phase of Schema theory.

� gClass is also equipped with a local forgetting scheme inspired
by [28] to surmount gradual concept drift, where the forgetting
intensity is enumerated by a newly developed method, called
the Local Data Quality (LDQ) method. It is worth stressing that
gradual concept drift is more precarious than abrupt concept
drift, because gradual concept drift cannot be detected by
standard drift detection or the rule generation method. On
the other side, it cannot be handled by the conventional
parameter learning method either. This situation entails the
local forgetting scheme, which adapts fuzzy rule parameters
more firmly and is thereby able to pursue changing data
distributions. In the realm of Scaffolding theory, the local
drift-handling strategy plays a problematizing role in the active
supervision of the theory.

� gClass enhances the Fisher Separability Criterion (FSC) in the
empirical feature space method with the optimization step via
the gradient ascent method. This step not only alleviates the
curse of dimensionality, but it also improves the discriminatory
power of input features. Noticeably, it triggers a direct impact
on the classifier's generalization. The online feature weighting
technique is employed to address the complexity reduction
scenario in the active supervision of the scaffolding concept.

The contributions of this paper are summarized as follows:
(1) the paper proposes a new class of meta-cognitive classifiers,
which consolidate the Schema and Scaffolding theories to drive the
how-to-learn module. (2) The paper introduces a novel type of TSK
fuzzy rule, crafted by the multivariable Gaussian function in the
premise component and the non-linear Chebyshev polynomial in
the output component. (3) Four novel learning modules in the
gClass learning engine are proposed: online feature selection;

online active learning; class overlapping strategy; and online
feature weighting mechanism. The viability and efficacy of gClass
have been numerically validated by means of thorough numerical
studies in both real-world and artificial study cases. gClass has also
been benchmarked against various state-of-the-art classifiers, con-
firmed by rigorous statistical tests in which gClass demonstrates
highly encouraging generalization power while suppressing com-
plexity to an acceptable level. The remainder of this paper is
organized as follows: Section 2 discusses related works. Section 3
illustrates the gClass inference mechanism, i.e., its cognitive aspect.
Section 4 outlines the algorithmic development of gClass, i.e., its
meta-cognitive component. Section 5 deliberates the empirical
studies and discussions of the research gap and contribution, which
detail the viability and research gap of gClass. Concluding remarks
are drawn in the last section of this paper.

2. Literature review

In this section, two related areas are discussed. A survey of the
psychological concepts implemented in gClass is undertaken, as
well as a literature review of state-of-the art evolving classifiers.

2.1. Human learning

The main challenge of learning sequentially from data streams
is how to deal with the stability and plasticity dilemma [15,16,49],
which requires a balance between new and old knowledge. In the
realm of cognitive psychology, this dilemma is deliberated in
Schema theory, which is a psychological model for human knowl-
edge acquisition and the organization of human memory [14,66],
in which knowledge is organized into units, or schemata (sing.
schema). Information is stored within the schemata, and Schema
theory is thus the foundation of a conceptual system for under-
standing knowledge representation.

In essence, Schema theory is composed of two parts: schemata
construction and schemata activation. Schemata are built in the
construction phase, and this is achieved by three possible learning
scenarios that relate to the conflict level induced by an incoming
datum – accretion, tuning and restructuring. Accretion pinpoints a
conflict-free situation, where an incoming datum can be well-
represented by an existing schema. Tuning represents a minor
conflict circumstance in which only the adaptation of a schema is
entailed. The most significant case is the restructuring phase, in
which a datum induces a major conflict which demands the
restructure of an existing schema or its complete replacement.
Schemata activation describes a self-regulatory process to evaluate
the performance of the schemata, or determines a compatible
learning scenario to manage a new example.

Scaffolding theory elaborates a tutoring theory, which assists
students to accomplish a complex learning task [68]. This goal is
achieved by passively and actively supervising the training pro-
cess. Passive supervision implements a learning strategy by virtue
of the experience and consequence mechanism, and depends on
the predictive quality of fresh data. Passive supervision is particu-
larly represented by the parameter learning of the rule conse-
quent. Active supervision makes use of more proactive
mechanisms and consists of three learning scenarios: complexity
reduction; problematizing; and fading [67]. The complexity reduc-
tion component aims to relieve the learning burden and can be
actualized by data pre-processing and/or feature selection. Pro-
blematizing copes with concept drift and can be realized by a local
forgetting mechanism and/or rule recall strategy. The fading
constituent deciphers a structure simplification procedure which
inhibits redundancy in the rule base; this concept is usually
executed by the rule pruning technique.
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