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a b s t r a c t

This paper investigates the problem of fuzzy H1 control design for a class of discrete-time nonlinear
control systems via a multi-samples approach. A new fuzzy H1 controller, which is parameter-
dependent on not only the current-time but also the one-step-past membership functions, is developed
to derive less conservative design conditions for ensuring both the asymptotic stability and the
prescribed H1 performance index of the obtained closed-loop system. Thanks to the usage of both a
new fuzzy Lyapunov function and an extension of the homogenous matrix polynomial methodology,
linear matrix inequality (LMI)-based H1 control design conditions are obtained for minimizing the
normal level in a systematic and relaxed way. In addition, further efforts are made by developing an
efficient slack variable approach. Finally, two numerical examples are provided to illustrate the
effectiveness of the results given in this paper.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the past several decades, the study of robust control
has attracted considerable attention since failures of control
components often occur in real industrial systems [1–5]. The
main objective of the existing literature is to design a fixed
controller such that the closed-loop system can maintain stability
and acceptable performance, not only when all control compo-
nents are operational, but also in the case of some admissible
control component outages. Among them, it is well known that
H1 control is an effective control methodology to attenuate the
effect of uncertain external disturbances or unmodeled dynamics
on control systems, and hence H1 control problems for linear
systems have been extensively studied, see [6] and the literature
therein. In particular, the result of H1 control design of linear
systems has been extended to nonlinear systems by using the
Hamilton–Jacobi inequality (HJI) approach, but it is very difficult
to solve an HJI either analytically or numerically until now.

On the other hand, it is well-known that Takagi–Sugeno (T–S)
fuzzy model [7] has been proved to be an efficient tool for the
representation of complex nonlinear systems and applications.
Especially, control synthesis via the so-called T–S fuzzy model has
attracted lots of attention [8,9], However, the above-mentioned

works use common Lyapunov functions (CLF), and the results
based on the CLF method are quite conservative, especially for
those used to represent highly nonlinear complex systems. More
recently, several approaches have been developed to implement
the task of control synthesis of T–S fuzzy control systems with less
conservative conditions [10–18]. In [19], robust H1 control for
discrete-time fuzzy systems has been investigated via basis-
dependent Lyapunov functions. By introducing some additional
instrumental matrix variables, the stabilization conditions have
been relaxed in [20]. Meanwhile, reliable LQ fuzzy control pro-
blems for nonlinear systems with actuator faults have been
addressed in [21], where different Lyapunov functions for different
operating regimes (including the normal and faulty cases) were
used to reduce the conservatism of using an CLF. More recently, a
type of state feedback controllers, namely, switched parallel
distributed compensation (PDC) controllers, has been proposed
in [22], which are switched based on the values of membership
functions.

It is worth pointing out that all the above fuzzy H1 controllers
are motivated by the usual PDC theory. One will naturally give a
question: whether the conservatism could be further reduced if
some different and interesting structures are adopted. In this
paper, the problem of fuzzy H1 control for a class of discrete-
time fuzzy systems is investigated. To the best of our knowledge,
this is the first time in the literature that such a novel kind of
fuzzy H1 controller is designed, which is homogenous polyno-
mially parameter-dependent (HPPD) on both the current and the
one-step-past membership functions with some prescribed
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degrees. A new fuzzy Lyapunov function, which is also HPPD on
fuzzy membership functions of arbitrary degree, is applied to
derive our main results. By using a new fuzzy Lyapunov function
and the homogenous matrix polynomial technique, linear matrix
inequality (LMI)-based asymptotically necessary and sufficient
reliable H1 control conditions are proposed for minimizing the
normal level while maintaining acceptable levels in an systematic
and relaxed way. In particular, the existing results are some
special cases of the one given in this paper. Two illustrative
examples are finally given to demonstrate the effectiveness of the
proposed results.

Notations. The notation P40 means that P is real symmetric
and positive definite. R represents the set of real numbers, Zþ
represents the set of positive integers, N denotes the natural
numbers set f0;1;2;…g, and p! denotes factorial, i.e.,
p!¼ pðp�1Þðp�2Þ⋯ð2Þð1Þ for pAN with 0!¼ 1.

2. Problem formulation and preliminaries

Considering a class of discrete-time nonlinear system that is
represented by a set of T–S fuzzy rules as follows [7]:

Rule i: If z1ðtÞ is F1
i , and z2ðtÞ is F2

i , ⋯, and zp(t) is Fp
i , Then

xðtþ1Þ ¼ AixðtÞþB1iwðtÞþB2iuðtÞ
zðtÞ ¼ CixðtÞþD1iwðtÞþD2iuðtÞ

(

where xðtÞARnx is the state variable; uðtÞARnu is the control input;
wðtÞA lp1½0;1Þ is the exogenous disturbance; zðtÞARnz is the con-
trolled output; Ai;B1i;B2i;Ci;D1i and D2i are known constant
matrices with appropriate dimensions.

By utilizing the singleton fuzzier and the center-average defuz-
zier, the overall discrete-time T–S fuzzy model is obtained as [7]

xðtþ1Þ ¼
Xr
i ¼ 1

hiðθðtÞÞ AixðtÞþB1iwðtÞþB2iuðtÞð Þ

zðtÞ ¼
Xr
i ¼ 1

hiðθðtÞÞ CixðtÞþD1iwðtÞþD2iuðtÞð Þ

8>>>>><
>>>>>:

ð1Þ

where θðtÞ ¼ ½θ1ðtÞ; θ2ðtÞ;…; θgðtÞ�T is the premise variable, while r is
the number of fuzzy rules; hiðθðtÞÞ represents the normalized
weight for the i-th rule, that is, hiðθðtÞÞZ0 and

Pr
i ¼ 1 hiðθðtÞÞ ¼ 1.

In this paper, our objective is to propose a H1 controller with
less conservatism than those existing results in the literature, such
that the following two conditions are simultaneously satisfied:

(1) The discrete-time fuzzy system (1) is asymptotically stable
when wðtÞ ¼ 0.

(2) The discrete-time fuzzy system (1) has prescribed levels γ of
H1 noise attenuation, i.e., under the zero initial condition
xð0Þ ¼ 0, JeJ2oγ JwJ2 is satisfied for any nonzero
wðtÞA l2½0;1Þ.

Throughout this paper, definitions associated with homogeneous
polynomials are all consistent with those in [17]. For simplicity,
some shortenings are offered as follows:

hi ¼ hiðθðtÞÞ;h¼ ðh1;…;hrÞT ;h�1 ¼ ðh1ðθðt�1ÞÞ;…;hrðθðt�1ÞÞÞT ;
hk ¼ hk11 hk22 ⋯hkrr ;h

k
�1 ¼ hk1

1 ðθðt�1ÞÞhk22 ðθðt�1ÞÞ⋯hkrr ðθðt�1ÞÞ;
hþ1 ¼ ðh1ðθðtþ1ÞÞ;…;hrðθðtþ1ÞÞÞT ;
hkþ1 ¼ hk1

1 ðθðtþ1ÞÞhk22 ðθðtþ1ÞÞ⋯hkrr ðθðtþ1ÞÞ:

8>>>>><
>>>>>:

ð2Þ
By definition, for r-tuples k and k0, one writes kZk0 if

kiZk0i; ði¼ 1;…; rÞ. The usual operations of summation, kþk0, and
subtraction, k�k0 (whenever kZk0), are defined componentwise.
In particular, two important definitions about the r-tuple eiAKð1Þ

and the coefficient πðkÞ are provided as below

ei ¼ 0⋯0 1|{z}
i�th

0⋯0; πðkÞ ¼ ðk1!Þðk2!Þ⋯ðkr!Þ: ð3Þ

Lemma 1. For three prescribed positive integers g1; g2 and g3,
matrices Rij

k0qk″
with k0AKðg1Þ, qAKðg2�2Þ, k″AKðg3Þ, and

1r irr;1r jrr, the following equality (4) always holds:X
k0 AKðg1 Þ;kAKðg2 Þ;k″ AKðg3 Þ;

i;jAAðkÞ;k� ei � ej Z 0

� �hk0�1h
khk″

þ1R
ij
k0 ðk� ei �ejÞk″

¼
X

k0 AKðg1 Þ;qAKðg2 � 2Þ;
k″ AKðg3 Þ;1r ir r; 1r jr r

� �hk0�1h
qhk

″

þ1hihjR
ij
k0qk″

: ð4Þ

Proof. The proof is similar to the proof of Lemma 3 of [17], thus it
is omitted here for saving space. □

3. Relaxed fuzzy H1 control design

3.1. Relaxed fuzzy H1 analysis

In order to reduce the conservatism of existing results, a new
fuzzy H1 controller, which is parameter-dependent on not only
the current-time but also the one-step-past membership functions
with any pair of prescribed degrees, is offered as below

uðtÞ ¼ Fg1g2 ðh�1hÞG�1
g1g2

ðh�1hÞxðtÞ; ð5Þ

where

Fg1g2 ðh�1hÞ ¼
X

kAKðg1 Þ;
k0 AKðg2 Þ

� �hk�1h
k0Fkk0 ; Gg1g2 ðh�1hÞ ¼

X
kAKðg1 Þ;
k0 AKðg2 Þ

� �hk�1h
k0Gkk0 ;

Fkk0 ARnu�nx and Gkk0 ARnx�nx are control gain matrices, g1; g2AZþ .
By employing both (1) and (5), the closed-loop control system

can be derived as follows:

xðtþ1Þ ¼
Xr
i ¼ 1

hi AiþB2iFg1g2 ðh�1hÞG�1
g1g2

ðh�1hÞ
� �

xðtÞþB1iwðtÞ
� �

zðtÞ ¼
Xr
i ¼ 1

hi CixðtÞþD2iFg1g2 ðh�1hÞG�1
g1g2

ðh�1hÞ
� �

xðtÞþD1iwðtÞ
� �

8>>>>><
>>>>>:

ð6Þ

Theorem 1. For some prescribed scalars γ40, if there exist sym-
metric matrices Pkk0 , matrices Fkk0 and Gkk0 , for kAKðg1Þ; k0AKðg2Þ,
such that the following matrix inequality (7) is satisfied:

�P�1
g1g2

ðh�1hÞ n n n

0 �γ2I n n

Π31 D1ðhÞ � I n

Π41 B1ðhÞ 0 �Pg1g2 ðhhþ1Þ

2
666664

3
777775o0; ð7Þ

where Π31 ¼ CðhÞþD2ðhÞFg1g2 ðh�1hÞðGg1g2 ðh�1hÞÞ�1, Π41 ¼ AðhÞþ
B2ðhÞFg1g2 ðh�1hÞðGg1g2 ðh�1hÞÞ�1, then the closed-loop control system
(6) is asymptotically stable when wðtÞ ¼ 0, and has prescribed levels γ
of H1 noise attenuation.

Proof. The proof is twofold: we first certificate that the closed-
loop control system (6) is asymptotically stable when wðtÞ ¼ 0 and
then prove that, under the zero initial condition xð0Þ ¼ 0, the H1
noise attenuation JeJ2oγ JwJ2 is satisfied for any nonzero
wðtÞA l2½0;1Þ.

To prove the first part, we choose a fuzzy Lyapunov function
candidate which is homogenous polynomially parameter-
dependent on both the current and the one-step-past membership
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