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a b s t r a c t

Recently, semi-supervised learning has received much attention in data mining and machine learning,
and a number of algorithms are proposed to discuss how to make good use of the unlabeled data. Some
algorithms deal with the unlabeled data in an exact way, in which each unlabeled sample is assigned to
one single class and then treated as a labeled sample. Other algorithms use the unlabeled data to
regularize the objective function but do not explicitly model the influence of the unlabeled data towards
different classes. In many applications, however, the unlabeled data may be ambiguous and belong to
multiple classes with different probabilities. Based on this assumption, this paper presents a Probabilistic
Laplacian-regularized Kernel Minimum Squared Error algorithm (named PrLapKMSE), in which the
probabilities of the unlabeled data belonging to different classes are adaptively generated. “Adaptively”
means that these probabilities are recalculated iteratively along with the reformulated objective function
so that the unlabeled data may have increasingly accurate effects on the semi-supervised learning
procedure. Experimental results on several simulated and real-world datasets illustrate the effectiveness
of our algorithm.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning has beenwidely used in various computer vision
and pattern recognition applications, such as object detection and
tracking [1–3], face recognition [4–6], speech recognition [7], hand-
written digit recognition [8], and scene categorization [9,10]. Recently,
semi-supervised learning [11,12] has received more and more atten-
tion, which investigates how to exploit the information of both
labeled and unlabeled data to achieve better performance than
supervised learning. How to use the information of unlabeled data
is the core problem. Among the various semi-supervised learning
methods, Self-training [13] and Co-training [14] are the widely used
approaches where the unlabeled data with the highest confidence are
labeled and added to the training set at each iteration. In these
approaches, an unlabeled data sample is usually assigned to exactly
one single class. However, when some unlabeled data lie in the
overlapping region of two or more classes, it may be beneficial not to
give the unlabeled data hard assignments during the learning process,
especially in the early stage.

On the other hand, manifold regularization based methods have
become popular, which exploit the intrinsic manifold structure of the
labeled and unlabeled data without explicitly labeling the unlabeled

data. Belkin et al. [15] proposed Laplacian Regularized Least Squares
(LapRLS) and Laplacian Support Vector Machines (LapSVM), both of
which employ Laplacian regularization to the labeled and unlabeled
data. Due to the high computational efficiency of Kernel Minimum
Squared Error (KMSE) in the training phase, Gan et al. [16] proposed a
semi-supervised KMSE (LapKMSE) which incorporated the manifold
structure of the labeled and unlabeled data in the objective function of
KMSE. Cai et al. introduced a Semi-supervised Discriminant Analysis
(SDA) [17] and Graph Regularized Nonnegative Matrix Factorization
(GNMF) [18] where the intrinsic manifold structure is modeled
through a p nearest neighbor graph. However, these methods only
use the unlabeled data in the regularization terms but not the fidelity
terms, that is, they do not explicitly model the influence of the
unlabeled data towards different classes.

Based on the above observations, we propose a Probabilistic
Laplacian-regularized KMSE (PrLapKMSE) algorithm in this paper.
In particular, we assign class probabilities to each unlabeled
sample and incorporate the probabilities into the objective func-
tion of the original LapKMSE. The class probabilities represent the
degrees of each unlabeled sample belonging to the different
classes. Note that here we interpret this ambiguity property of
the samples with the Bayesian interpretation of probability.
Another way is to use the fuzzy membership function in fuzzy
logic. The distinction between the two interpretations is not
critical in our derivation. The probabilities are adaptively com-
puted to control the contributions of the unlabeled data to the
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learning of the classifier. Furthermore, we show in our derivation
that the optimal probability function for the unlabeled data is
essentially a probabilistic variant of the optimal decision function.
We conduct extensive experiments on several simulated and real-
world datasets to demonstrate the robustness and effectiveness of
our method.

The rest of the paper is organized as follows: In Section 2, we
briefly review the related work and necessary background. Section 3
explains our algorithm in detail. An illustrative example on simulated
data is shown in Section 4 to highlight the advantage of our method,
and extensive experiments are carried out in Section 5 on publicly
available datasets with detailed analysis. Finally, we conclude the
paper and discuss some future directions in Section 6.

2. Background

2.1. Naïve KMSE

Let X ¼ fðx1; y1Þ;…; ðxl; ylÞg be a training set of size l, where
xiARD and yiAR. For the binary classification problem, yi ¼ �1 if
xiAω1 and yi¼1 if xiAω2. By using a nonlinear mapping function
Φ, a training data sample xi is transformed into a new feature
space ΦðxiÞ from the original data space. The task of KMSE is to
build a linear model on the new features so that the outputs of the
training data obtained by the linear model are equal to the labels

ΦW ¼ Y ð1Þ
where

Φ¼
1 Φðx1ÞT
⋮ ⋮
1 ΦðxlÞT

2
64

3
75; W ¼ α0

w

� �
and Y ¼ ½y1;…; yl�T

According to the reproducing Kernel theory [19,20], w can be
expressed as

w¼
Xl
i ¼ 1

αiΦðxiÞ ð2Þ

By substituting (2) into Eq. (1), we can get

Kα¼ Y ð3Þ
where

K ¼
1 kðx1; x1Þ ⋯ kðx1; xlÞ
⋮ ⋮ ⋱ ⋮
1 kðxl; x1Þ ⋯ kðxl; xlÞ

2
64

3
75 and α¼

α0

⋮
αl

2
64

3
75

here K is the Gram matrix whose entries are kðxi; xjÞ ¼
ðΦðxiÞ �ΦðxjÞÞ.

The goal of KMSE is to find the optimal vector α by minimizing
the objective function as follows:

J 0ðαÞ ¼ ðY�KαÞT ðY�KαÞ ð4Þ
By setting the derivative of J 0ðαÞ with respect to α to zero, we

can obtain the solution:

αn ¼ ðKTKÞ�1KTY ð5Þ
From Eq. (5), we can find that the dimension of αn is lþ1 and

RankðKTKÞr l. In other words, KTK is always singular. Conse-
quently, the solution αn is not unique. Regularization approaches,
e.g., [21], are often used to deal with the ill-posed problem. The
corresponding regularized objective function can be described as

J 1ðαÞ ¼ ðY�KαÞT ðY�KαÞþμαTα ð6Þ
where μ is the weight of the regularization term.

By minimizing the above objective function (6), we can obtain

αn ¼ ðKTKþμIÞ�1KTY ð7Þ
where I is an identity matrix of size ðlþ1Þ � ðlþ1Þ.

When the optimal weight coefficients αn is obtained, the linear
model of KMSE can be written as

f ðxÞ ¼
Xl
i ¼ 1

αn

i kðxi; xÞþαn

0 ð8Þ

In the testing phase, xAω1 if f ðxÞo0 and xAω2 if f ðxÞ40.

2.2. Laplacian-regularized KMSE

Given a data set X ¼ fðx1; y1Þ;…; ðxl; ylÞ; xlþ1;…; xng with l labeled
data and u¼ n� l unlabeled data, LapKMSE [16] incorporated the
manifold structure of all the data into the objective function of KMSE.
In order to exploit the manifold structure, Gan et al. introduced a
Laplacian regularization term by using graph Laplacian. The Laplacian
regularization term is defined as

R¼ f T Lf ð9Þ
where L is the graph Laplacian, and f ¼ ½f ðx1Þ;…; f ðxnÞ�T is the output
of the decision function on the labeled and unlabeled data. The graph
Laplacian is defined as L¼D�S, where D is a diagonal matrix whose
entry Dii ¼

P
jSij and the edge weight matrix S¼ ½Sij�n�n can be

defined as follows:

Sij ¼
1 if xiANpðxjÞ or xjANpðxiÞ
0 otherwise

�
ð10Þ

where NpðxiÞ denotes the data sets of p nearest neighbors of xi.
By integrating the regularization term Eq. (9) into the objective

function (6), the objective function of LapKMSE can be given as

J rðαÞ ¼ ðY�GKαÞT ðY�GKαÞþγAα
TαþγIR ð11Þ

where

G¼
Il�l 0l�u

0u�l 0u�u

" #
;Y ¼ ½y1;…; yl;0;…;0�T ;

K ¼
1 kðx1; x1Þ ⋯ kðx1; xnÞ
⋮ ⋮ ⋱ ⋮
1 kðxn; x1Þ ⋯ kðxn; xnÞ

2
64

3
75

According to the Representer Theorem [15], the solution can be
written as

f ðxÞ ¼
Xn
i ¼ 1

αn

i kðxi; xÞþαn

0 ð12Þ

Substituting Eq. (12) into Eq. (11), the modified objective function
becomes

J rðαÞ ¼ ðY�GKαÞT ðY�GKαÞþγAα
TαþγIα

TKTLKα ð13Þ
Setting the derivative of Eq. (13) with respect to α to zero,

ð�GKÞT ðY�GKαÞþγAαþγIK
TLKα¼ 0 ð14Þ

we can get

αn ¼ ððGKÞTGKþγAIþγIK
TLKÞ�1ðGKÞTY ð15Þ

3. Probabilistic Laplacian-regularized KMSE

In the last section, we reviewed LapKMSE, and in this section,
we present our probabilistic extension.
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