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a b s t r a c t

In this paper, the problem on the global exponential stability of complex-valued neural networks with
both leakage delay and time-varying delays on time scales is discussed. By constructing appropriate
Lyapunov–Krasovskii functionals and using matrix inequality technique, a delay-dependent condition to
assure the global exponential stability for the considered neural networks is established. The condition is
expressed in complex-valued linear matrix inequality, which can be checked numerically using the
effective YALMIP toolbox in MATLAB. An example with simulations is given to show the effectiveness of
the obtained result.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few decades, neural networks have been widely
investigated due to their extensive applications in pattern recogni-
tion, associative memory, signal processing, image processing,
combinatorial optimization, and other areas [1]. In implementa-
tion of neural networks, however, time delays are unavoidably
encountered [2]. It has been found that, the existence of time
delays may lead to instability and oscillation in a neural network.
Therefore, stability analysis of neural networks with time delays
has received much attention, for example, see [1–8] and references
therein.

As an extension of real-valued neural networks, complex-valued
neural networks with complex-valued state, output, connection
weight, and activation function become strongly desired because of
their practical applications in physical systems dealing with electro-
magnetic, light, ultrasonic, and quantum waves [9]. In fact, complex-
valued neural networks (CVNNs) make it possible to solve some
problems which cannot be solved with their real-valued counter-
parts. For example, the XOR problem and the detection of symmetry
problem cannot be solved with a single real-valued neuron, but they
can be solved with a single complex-valued neuron with the
orthogonal decision boundaries, which reveals the potent

computational power of complex-valued neurons [10]. Besides,
CVNNs has more different and more complicated properties than
the real-valued ones [11]. Therefore it is necessary to study the
dynamic behaviors of CVNNs deeply [12].

In recent years, there have been some researches on the
stability of various CVNNs, for example, see [10–21]. In [10],
authors proposed CVNNs, and its weight matrix was supposed to
be Hermitian with nonnegative diagonal entries in order to
preserve the stability of the network. A computational energy
function was introduced and evaluated in order to prove network
stability for asynchronous dynamics. In [11], author weakened the
assumption on weight matrix in [10], and derived a new stability
condition. In [12], authors considered the complex-valued Hop-
field neural networks which possess the energy function and
analyzed the phase dynamics of the network with certain forms
of an activation function. In [13], higher order CVNNs were
proposed, and several criteria for checking stability were given
by considering a new energy function. In [14], a class of CVNNs
with constant delays was considered, and some sufficient condi-
tions were obtained for assuring the stability of the equilibrium
point of CVNNs with two classes of activation functions. In [15],
the boundedness and complete stability of CVNNs with constant
delay were investigated. Several criteria to guarantee the bound-
edness and complete stability were derived. In [16], the asympto-
tical stability of CVNNs with constant delay was investigated,
where the activation functions can be expressed by separating
their real and imaginary parts. In [17], authors considered CVNNs
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with time-varying delays and unbounded distributed delays
whose activation functions can be expressed by separating their
real and imaginary parts. In [18], when the activation functions
satisfy the Lipschitz continuity condition in the complex domain,
the asymptotical stability of CVNNs with constant delay was
studied. In [19], authors considered discrete-time CVNNs, and
obtained several sufficient conditions for checking global expo-
nential stability of a unique equilibrium. In [20], authors discussed
a class of discrete-time recurrent neural networks with complex-
valued linear threshold neurons, and derived some conditions for
the boundedness, global attractivity, and complete stability of such
networks. In [21], authors introduced the delay into discrete-time
CVNNs in [20], and investigated the boundedness and complete
stability of the considered discrete-time CVNNs with constant
delay. By constructing appropriate Lyapunov–Krasovskii func-
tionals and employing linear matrix inequality technique and
analysis method, several new delay-dependent criteria for check-
ing the boundedness and global exponential stability were
established.

The above-mentioned CVNNs are either continuous-time
CVNNs or discrete-time neural networks, it is troublesome to
study stability in two kinds of models. Therefore, it is necessary to
unify the study of continuous-time and discrete-time neural net-
works under the same framework. In [22], based on the theory of
time scales, authors considered CVNNs on time scales and estab-
lished a main criterion guaranteeing the existence, uniqueness and
global exponential stability of equilibrium point. In [23], authors
considered CVNNs with both leakage time delay and discrete
constant delay on time scales. By using the fixed point theory, a
criterion for checking the existence, uniqueness of the equilibrium
point for the considered CVNNs was presented. By constructing
appropriate Lyapunov–Krasovskii functionals, and employing the
free weighting matrix method, several delay-dependent criteria
for checking the global stability of the addressed CVNNs were
established. In [24], the global exponential stability of CVNNs with
time-varying delays is investigated. By constructing appropriate
Lyapunov–Krasovskii functionals and using matrix inequality
technique, a new delay-dependent criterion for checking the
global exponential stability of the addressed CVNN was estab-
lished in terms of real linear matrix inequalities (LMIs). However,
the previous criteria in [22–24] for checking the stability of the
addressed CVNNs are somewhat conservative due to the construc-
tion of constructed Lyapunov functionals and technicality of used
mathematical method. Hence, it is our intention in this paper to
reduce the possible conservatism.

Motivated by the above discussions, the objective of this paper
is to study the exponential stability for CVNNs with both leakage
delay and time-varying delays. By constructing new Lyapunov–
Krasovskii functionals and using matrix inequality technique, we
obtain a new sufficient condition for checking the global expo-
nential stability of CVNNs with both leakage delay and time-
varying delays.

Notations: The notations are quite standard. Throughout this
paper, I represents the unitary matrix with appropriate dimen-
sions; Cn and Cn�m denote, respectively, the set of all n-dimen-
sional complex-valued vectors and the set of all n�m complex-
valued matrices. An shows the complex conjugate transpose of
complex-valued matrix A. λmaxðPÞ and λminðPÞ are defined as the
largest and the smallest eigenvalue of Hermitian matrix P, respec-
tively. The subscript T denotes the matrix transposition. The
notation X4Y means that X and Y are Hermitian matrices, and
that X�Y is positive definite. i shows the imaginary unit, i.e.,
i¼

ffiffiffiffiffiffiffiffi
�1

p
. jaj denotes the module of complex number aAC, and

JzJ denotes the norm of zACn, i.e., JzJ ¼
ffiffiffiffiffiffiffi
znz

p
. If AACn�n,

denotes by JAJ its operator norm, i.e., JAJ ¼ supfJ
AxJ : JxJ ¼ 1g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxðAnAÞ

p
. Set ½a; b�T is defined as

½a; b�T : ftAT ; artrbg. Sometimes, the arguments of a function
or a matrix will be omitted in the analysis when no confusion
can arise.

2. Model description and preliminaries

In this section, we will recall some definitions and lemmas
which will be used in the proofs of our main results.

Let T be an arbitrary nonempty closed subset (time scale) of R.
The forward and backward jump operators σ;ρ : T-R and the
graininess μ : T-Rþ , respectively, by σðtÞ≔inffsAT : s4tg,
ρðtÞ≔supfsAT : sotg and μðtÞ ¼ σðtÞ�t. Throughout this paper,
we always assume that time scale T has a bounded graininess
μðtÞrμo1.

For a point tAT , t is called right-dense if σðtÞ ¼ t, right-
scattered if σðtÞ4t, left-dense if ρðtÞ ¼ t, left-scattered if ρðtÞot.

For f : T-Cn and tAT , we note that the real and imaginary
parts of f are real valued and one can use the time scales results
below for the real-valued entries of Ref and Imf. We say that f :
T-R is delta differentiable at tAT provided there exists an α such
that for all ϵ40 there is a neighborhood N of t with

j f ðσðtÞÞ� f ðsÞ�αðσðtÞ�sÞjoϵjσðtÞ�sj ;
for all sAN . In this case we denote α by f ΔðtÞ, and call f ΔðtÞ the
delta derivative of f at t. It is easy to see that

f ΔðtÞ ¼
lim

s-t;sAT

f ðtÞ� f ðsÞ
t�s

if μðtÞ ¼ 0

f ðσðtÞÞ� f ðtÞ
σðtÞ�t

if μðtÞ40

8>>><
>>>:

and

ðfgÞΔ ¼ f Δgþðf þμf ΔÞgΔ:
Let f be right-dense continuous, if FΔðtÞ ¼ f ðtÞ, we define the

delta integral byZ t

a
f ðsÞΔs¼ FðtÞ�FðaÞ:

It is easy to check that the following formula holdsZ σðtÞ

t
f ðsÞΔs¼ μðtÞf ðtÞ:

A function f : T-R is called rd-continuous provided it is
continuous at right-dense points on T and its left sided limits
exist at left-dense points on T. The set of rd-continuous functions
f : T-R is denoted by Crd ¼ CrdðT ;RÞ. A function f : T-R is called
regressive if 1þμðtÞf ðtÞa0 for all tAT . The set of all regressive and
rd-continuous functions is denoted by R. The set Rþ of all
positively regressive function consists of those pAR that satisfy
1þμðtÞf ðtÞ40 for all tAT . It is known that if pAR and t0AT , then
the initial value problem yΔðtÞ ¼ pyðtÞ, yðt0Þ ¼ 1 possesses a unique
solution. This solution is called the exponential function on the
time scale and is denoted by epð�; t0Þ.

In this paper, we consider the following CVNNs with both
leakage delay and time-varying delays on time scale

zΔðtÞ ¼ �Dzðt�σÞþAf ðzðtÞÞþBf ðzðt�τðtÞÞÞþ J ð1Þ
for tAT , where zðtÞ ¼ ðz1ðtÞ; z2ðtÞ;…; znðtÞÞT ACn is the state vector
of the neural network with n neurons at time t; D¼
diagfd1; d2;…; dngARn�n is the self-feedback connection weight
matrix, where di40; A and B are n� n matrix with complex
entries; f ðzðtÞÞ ¼ ðf 1ðz1ðtÞÞ; f 2ðz2ðtÞÞ;…; f nðznðtÞÞÞT ACn denotes the
neuron activation at time t; J ¼ ðJ1; J2;…; JnÞT ACn is the external
input vector; σ denotes leakage delay, τðtÞ is the transmission
delay which satisfy that 0rτðtÞrτ and t�τðtÞAT for all tAT ,
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