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a b s t r a c t

In this paper, we propose a variational level set model with indirect regularization term for image
segmentation. Instead of using direct regularization on level set function, we introduce an auxiliary
function to regularize indirectly the level set function. Our energy functional consists of a data term, a
link term of level set function with the auxiliary function and a regularization term of the auxiliary
function. We prove that the energy functional is convex in L2 Ω

� ��W1;2 Ω
� �

and give the convergence
analysis of the alternating minimization algorithm that we utilized. We show that the indirect
regularization has some advantages over direct regularization theoretically and experimentally. Experi-
mental results illustrate that the proposed model can better handle images with high noise, angle and
weak edges.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Image segmentation is an important subject in image processing
and computer vision which facilitates the subsequent tasks such as
image analysis, pattern recognition. Based on some similar character-
istics (intensity value, texture, color) of the input image, one would
like to partition the image domain into two or more regions, each
representing an object. Up to now, a lot of good algorithms and
methods have been proposed to address the image segme-
ntation tasks.

Many successful approaches to image segmentation involve
partial differential equations (PDE) and variational level set mod-
els. The evolution PDE for a PDE-based model is directly con-
structed or indirectly derived from a minimization problem, while
the evolution PDE for a variational level set model is directly
derived from the minimization of energy functional over level set
functions. So far, there are a lot of researches for PDE-based
models [1–7]. In this work, we focus on the variational level set
methods for image segmentation.

Among a wealth of variational level set models [8–19], we must
state the celebrated “active contours without edges” model pro-
posed by Chan and Vese [8], one of the most widely used models
for two-phase image segmentation. Its energy functional consists
of two terms: a data term and a regularization term based on zero
level set (i.e., length regularization). It works well in processing

images with a large amount of noise and can detect objects whose
boundaries cannot be defined by gradient. But the Chan–Vese
model has also the following limits.

First, it is difficult to handle images with intensity inhomogeneity
because of its simple assumption of intensity homogeneity. To over-
come this defect, many works [9–12] are proposed in different ways.
These methods assume normally that the intensities are homoge-
neous in local regions of image. By dealing with image in terms of
local regions instead of global regions, they perform well on images
with intensity inhomogeneity. The popular methods include the well-
known region-scalable fitting (RSF) model [9], the local image fitting
(LIF) model [10], the local intensity clustering (LIC) model [11] and the
local Gaussian intensity clustering (LGIC) model [12], etc.

Second, the minimizer of the energy functional for the Chan–Vese
model [8] sometimes becomes a local one due to the non-convexity of
functional. This is a serious difficulty because the local minima of
functional often offer poor segmentation results. To overcome this
difficulty, some researches [13–16] provided convex methods and
algorithms to solve the non-convex problem of the Chan–Vese model.
Chan et al. [13] provided an efficient global convex energy functional
of the Chan–Vese (GCV) model to compute global minimizers by
showing that solutions could be obtained from a convex relaxation, in
which the total variation (TV) is used as the regularization term.
Afterwards, Bresson et al. [14] proposed a global convex segmentation
(GCS) model by integrating a weighted TV into the GCV model.
Recently, Brown et al. [15] proposed a completely convex formulation
of the Chan–Vese model, which is guaranteed to compute a global
minimizer of functional under certain conditions. In our previous
work [16], we proposed a convex variational level set model based on
the coefficient of variation (CoV); we proved that the value of the
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unique global minimizer for the energy functional is within the
interval [�1, 1] for any image, and equals to 1 in the object and �1
in the background for an ideal binary image.

Third, when implementing the Chan–Vese model, a re-
initialization technique is usually needed periodically to maintain
the degraded level set function being a signed distance function in
the whole iteration process [8]. However, this regularization
method is very time-consuming and introduces some fundamen-
tal problems about when and how to apply the re-initialization. To
eliminate the re-initialization step, some variational level set
formulations [20–23] have been proposed to regularize the level
set function during evolution. These methods without re-
initialization have many advantages over the traditional methods.
The well-known distance regularization level set evolution
(DRLSE) methods, including DRLSE1 [20], DRLSE2 [21] and DRLSE3
[22], keep the level set function as a signed distance function
during the evolution. Recently, Zhang et al. [5] proposed a
reaction–diffusion method for level set evolution by using the H1

regularization, i.e., ER ϕ
� �¼ RΩ j∇ϕj 2dx where ϕ is the level set

function. This method performs well on image with high noise
because a standard method minimizing ER ϕ

� �
is to find the

steady-state solution of the gradient flow equation ∂ϕ=∂t ¼Δϕ.
The role of this diffusion equation is to regularize the level set
function ϕ; it controls the smoothness of the zero level set to
penalize complicated boundaries of regions and further avoid the
occurrence of isolated small regions (e.g., noise points) in final
segmentation. However, this processing is essentially equivalent to
the Gaussian smoothing that will eventually output a constant
function. At the meantime, some other shape-prior based level set
methods [24,25] also reduce the re-initialization procedure by
integrating a trained shape into the level set energy functional.

The aforementioned models can be categorized into the direct
regularization framework, in which the regularization is directly
posed on level set functions. In this paper, we propose an
indirectly regularized variational level set model in which the
regularization is posed indirectly on level set function via an
auxiliary function. The energy functional of this model contains
three terms: a data term, a link term of level set function with the
auxiliary function and a regularization term of the auxiliary
function. We prove that the proposed energy functional is convex
in L2 Ω

� ��W1;2 Ω
� �

and has a unique global minimizer. Since the
energy functional is convex, the proposed model can be solved
efficiently by means of the alternating minimization algorithm
(see for example [26]). We show that the alternating minimization
algorithm is convergent for the proposed model under mild
conditions. Experiments on synthetic and real images illustrate
that our model provides promising segmentation results com-
pared with state-of-the-art works [5,8,13,16].

The organization of the remainder of this paper is as follows. In
Section 2, we introduce some related works. In Section 3, we propose
an indirectly regularized variational level set model and give a
rigorous analysis. Section 4 gives the algorithm and convergence ana-
lysis. Section 5 presents experimental results. In Section 6, we discuss
initializations of level set function and auxiliary function and the
advantages of indirect regularization over direct regularization. This
paper is summarized in Section 7.

2. Previous works

Let Ω� R2 be a bounded open connected set with a Lipschitz
boundary, and f : Ω-R be a given image. Let ϕ : Ω-R denote the
level set function. Traditionally, the energy functional for the existing
variational level set models can be formulated in the form:

E ϕ
� �¼ ED f ;ϕ

� �þER ϕ
� �

; ð1Þ

where ED f ;ϕ
� �

is the data term or external energy which makes the
zero level set of ϕ deform so that it fits to the object boundary, and
ER ϕ
� �

is the regularization term or internal energy which penalizes
the oscillation of ϕ.

2.1. About the data term

In [8], Chan and Vese constructed a data term which is
expressed as the following formulation:

ED f ;ϕ
� �¼ λ1

Z
Ω

f �c1ð Þ2H ϕ
� �

dxþλ2
Z
Ω

f �c2ð Þ2 1�H ϕ
� �� �

dx; ð2Þ

where λ1, λ2 are positive parameters, and H is the Heaviside
function. The constants c1 and c2 are defined as

c1 ¼
R
Ωf UH ϕ

� �
dxR

ΩH ϕ
� �

dx
; c2 ¼

R
Ωf U 1�H ϕ

� �� �
dxR

Ω 1�H ϕ
� �� �

dx
; ð3Þ

which represent the mean intensity values of f in Ω1 ¼
fxAΩjϕðxÞ40g and Ω2 ¼ fxAΩjϕðxÞo0g, respectively. The data
term (2) is non-convex and so has sometimes local minima that
often provide poor results.

To overcome this defect, Chan et al. [13] provided a convex
relaxation method, in which the data term is defined as follows:

ED f ;ϕ
� �¼ λ

Z
Ω

f �c1ð Þ2� f �c2ð Þ2
� �

ϕdx; ϕA 0;1½ �; ð4Þ

where λ is a positive parameter, and the constants c1 and c2 are
defined as

c1 ¼
R
Ω1

f xð ÞdxR
Ω1

dx
; c2 ¼

R
Ω2

f xð ÞdxR
Ω2

dx
; ð5Þ

which represent the mean intensity values of f in Ω1 ¼
fxAΩjϕðxÞ4αg and Ω2 ¼ fxAΩjϕðxÞoαg with αA 0; 1ð Þ, respec-
tively. The energy functional in (4) is homogeneous of degree 1 with
respect to ϕ, which does not exist minimizer in general, thus the
authors simply restrict the values of ϕ such that 0rϕr1.

Recently, Lee and Seo [17] proposed the following data term
with two shifted Heaviside functions:

ED f ;ϕ
� �¼ λ1

Z
Ω

f �c1ð Þ2ϕH αþϕ
� �

dx� λ2
Z
Ω

f �c2ð Þ2ϕH α�ϕ
� �

dx;

ð6Þ
where λ1, λ2 are positive parameters, and α is an arbitrary positive
value. Here, ϕ is multiplied to prevent from computing a local
minimum and H 7ϕ

� �
is shifted by 8α to confine the range of ϕ.

As is the case for the formulation (2), the two constants c1 and c2
in (6) are still defined by (3). The Lee-Seo model has a global
minimum, and so works well on two-phase image segmentation
problems. Based on the Lee-Seo model, Li and Kim [18] replace the
Heaviside function in the Lee-Seo model with the function:

Hc zð Þ ¼ 1þz
2

; ð7Þ

and get the following data term:

ED f ;ϕ
� �¼ λ1

Z
Ω

f �c1ð Þ2ϕHc 1þϕ
� �

dx� λ2
Z
Ω

f �c2ð Þ2ϕHc 1�ϕ
� �

dx;

ð8Þ
The constants c1 and c2 are defined as

c1 ¼
R
Ωf UHc ϕ

� �
dxR

ΩHc ϕ
� �

dx
; c2 ¼

R
Ωf U 1�Hc ϕ

� �� �
dxR

Ω 1�Hc ϕ
� �� �

dx
: ð9Þ

The Li-Kim model can be numerically solved using an uncon-
ditionally stable semi-implicit scheme and segments well two-
phase images.
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