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a b s t r a c t

A measure for computing the dissimilarity for images is presented. The measure, based on information
theory, considers the pixel matrices representing two images, and compares their greatest common sub-
matrices. The algorithm to calculate the average area of square sub-matrices that exactly occur in both
the images is described, together with its computational complexity, and an extension to accelerate its
execution time is proposed. Experimental evaluation of the measure based on human perception of
multiple subjects demonstrates that the measure is able to correctly discriminate (dis)similar images.
Furthermore, an extensive quantitative evaluation on different kinds of image data sets shows the
superiority of the measure with respect to other state-of-the-art measures in terms of retrieval precision.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Distance computation between images is an important and
challenging problem in computer vision, image recognition, image
registration, and, more in general, pattern recognition. The deter-
mination of similarity between objects is of crucial importance in
retrieval systems where a query object must be compared with all
those contained in a database to compute the distance between
their corresponding representations. Many different measures
have been proposed and evaluated in various application domains
[1–5], along with algorithms to compute them. Recently, the
patch-based approaches are receiving a lot of attention because
they allow a more abstract representation of an image [5]. These
methods divide the image into small overlapping or non-
overlapping rectangles of fixed size, called patches, and analyze
the image at patch level, instead that at pixel level. As observed in
[6], patches contain contextual information, and are more efficient
in terms of computation. Given two images or image regions I and
J, nonparametric patch approaches find, for every patch in I, the
nearest neighbor patch in J under a patch distance metric. This
computation is referred to as Nearest Neighbor Field (NNF) and
both exact methods using kd-tree structures [7], and approximate
methods [6,8,9] have been proposed. However, though approx-
imate methods are more efficient, they could not explore the
overall search space and thus produce bad matches. On the other
hand, exact methods, when data dimensionality is high, could
become unfeasible since the brute force complexity becomes

Oðm2 M2Þ, where m and M are the patch and image sizes,
respectively.

In this paper, the information-theoretic measure to compute
the (dis)similarity between two images IA and IB, presented in [10],
is investigated, and an extension for its computation to accelerate
execution time is proposed. The measure, named Average Common
Sub-Matrix (ACSM), considers the pixel matrices A and B, defined
on an alphabet Σ, associated with IA and IB, of size N � N and
M �M, respectively, and determines the area of square sub-
matrices of matrix A that exactly occur in B, to quantify the
dissimilarity between IA and IB. The measure is showed to have
upper and lower bounds, moreover, for square matrices, it is
demonstrated that it is a semi-metric. In fact, though ACSM
satisfies nonnegativity, reflexivity, and symmetry properties, tri-
angular inequality cannot be proved. An optimization of the
algorithm to compute the measure, that exploits suffix tree data
structure and reduces its complexity from OðM2N2log ðNÞÞ to
OðN2þM2Þ, is also proposed. A thorough experimentation on
real-world and handwritten digit images shows that the ACSM
measure is able to reflect the concept of similar images as
perceived by humans on the former data set, and to outperform
well known information-theoretic measures. Moreover, ACSM
obtains higher retrieval precision values than measures we com-
pared with. The main advantages of the ACSM measure can be
summarized as the following:

� ACSM is an exact measure that searches the overall search
space, and not a limited spatial window, thus it avoids to find
locally optimal solutions.

� ACSM does not need to fix the patch size, but only a parameter
α representing a lower bound to the patch area. Current
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patch-based approaches, by fixing the patch size, could miss
some recurrent patterns with size bigger than that the fixed
patch size.

� The computation of ACSM is faster than other image (dis)
similarity measures. The computational complexity of acceler-
ated ACSM is linear in the image size, and does not depend on
the patch size.

� ACSM is not sensitive to noise, and thus it is able to correctly
discriminate between similar and dissimilar images even when
images are unclear.

The paper is organized as follows. In the next section an
overview of state-of-the-art dis(similarity) measures is reported.
Section 3 introduces the ACSM measure proposed in [10]. Section 4
studies its metric properties. Section 5 reviews the algorithm to
compute it, and proposes the use of a suffix tree data structure to
reduce its complexity. In Section 6 the experimental results are
reported, showing that the measure is very competitive with
respect to some other considered contestant measures. Section 7
discusses the advantages of ACSM with respect to the other state-
of-the-art measures. Section 8, finally, concludes the paper and
gives some suggestions for future work.

2. Related work

Many different measures have been defined to compute the
(dis)similarity between images. An extensive overview and per-
formance comparison can be found in [11]. A broad classification
categorizes them into three main groups [3]: geometric measures,
information theoretic measures, and statistical measures.

Geometric measures represent an image I ¼ fx1;…; xng as a
vector, where each xi is an image pixel mapped to a feature in
the feature space. The feature space is obtained through a feature
extraction process, and includes information such as color, posi-
tion, shape, or texture. The distance between two images I and J
can then be computed by using known measures, such as the
cosine distance or the Minkowski distance family
dðI; JÞ ¼ ðPn

i ¼ 1 ∣xi�yi∣pÞ1=p, where p¼1 corresponds to city block
norm, if p¼2 the Euclidean distance among pixels, while p¼1 the
Chebyshev distance. These measures, however, often are inade-
quate because of the semantic gap between the information
extracted from the image and the semantic assigned by a user to
the image [12]. In order to overcome this problem, recently,
distance metric learning techniques have been proposed [13–17].
The concept of distance metric learning comes from the machine
learning and data mining community [18,13]. It is based on the
idea of exploiting side information, like class labels and similarity/
dissimilarity couples between two objects. In particular, given a set
of images, each represented as a feature vector, and a set of

pairwise constraints ðI; JÞ indicating if I and J are deemed either
similar or dissimilar by domain experts, the goal of distance metric
learning is to learn a matrix M such that the Mahalanobis distance
dMðI; JÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI� JÞTMðI� JÞ

q
is optimized. To this end, Davis et al. [13]

presented an information theoretic approach, Information Theoretic
Metric Learning (ITML), that formalizes the problem as that of
minimizing the relative entropy between two multivariate Gaus-
sians. Chechik et al. [14] proposed an algorithm, Online Algorithm
for Scalable Image Similarity (OASIS), that learns a bilinear similar-
ity measure over sparse representations. Hoi et al. [15] formulated
the learning problem as a convex optimization task and proposed
a semi-supervised metric learning technique, along with two
algorithms to perform it. Li et al. [16] presented a low rank
distance metric learning LRML that uses visual and textual infor-
mation instead of similarity/dissimilarity constraints. The metric is
formalized as a convex optimization problem, and an algorithm
based on gradient method is given. Gao et al. [17] introduced a
Sparse Online Metric Learning (SOML) scheme to learn distance
functions from sparse large-scale high-dimensional data, and two
algorithms to solve the optimization problem.

Distance metric learning requires a form of supervision, since a
training data set must be available in order to allow the method to
find out an optimal Mahalanobis matrix. If the training set is small,
the solution obtained could generate overfitting, thus reducing the
generalization capability to unknown images. Moreover, existing
techniques are sensitive to noise and their performances degrade
with noisy and small training data, which, often, are common
situations in a real-world setting.

Information theoretic measures are derived from the concept of
entropy H defined by Shannon [19], H ¼ �PxpðxÞlog 2½pðxÞ�, where
p(x) is the probability that an image pixel will have the intensity
value x, estimated by the image histogram. They are based on pixel
intensity distributions and use the histograms of two images, i.e.
the number of times each gray value occurs in an image, to
determine the similarity between the images to be matched.
Several information-theoretic measures have been defined and
successfully applied in different contexts, such as medical imaging
[2]. Table 1 describes some of them that have been compared with
our measure in the experimental results section. Information
theoretic measures need the joint probability distribution of two
images, computed from their joint histogram. If the images
contain noise, the dispersion in the joint probability distribution
increases, thus causing mismatch between images.

Statistical measures, such as Pearson correlation coefficient, χ2

statistics, cross correlation [20], compare probability distributions
of image pixels.

More recently, the idea to analyze images at patch level, rather
than at pixel level, has been flourishing [6,8,9]. A patch is a small
pixel area, typically 3� 3 or 4� 4, extracted from an image. Given
two images I and J, the idea underlying the patch-based methods

Table 1
Information-theoretic (dis)similarity measures.

Measure Formula Description

Joint entropy JEðX;YÞ ¼HðX;YÞ ¼ �Px
P

ypXY ðx; yÞlog ½pXY ðx; yÞ� Entropy of the joint histogram of two images X and Y

Conditional entropy CEðX;YÞ ¼HðX jYÞ ¼HðX; YÞ�HðYÞ Entropy of the image X given the truth regarding image Y
Mutual information MIðX; YÞ ¼HðXÞþHðYÞ�HðX;YÞ Uncertainty reduction about one image given the information about the second one
Normalized mutual

information
NMIðX; YÞ ¼HðXÞþHðYÞ

HðX; YÞ
Normalized version of MI

Kullback–Leibler
divergence

KLðqJpÞ ¼PxqðxÞlog
qðxÞ
pðxÞ

Average inefficiency to use the histogram of one image to code another one, where p; q
probability distributions of the two images

Arithmetic–geometric
mean divergence

AGMðp; qÞ ¼Px
pðxÞþqðxÞ

2
log

pðxÞþqðxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqðxÞ

p KL divergence between the arithmetic and geometric means of p(x) and q(x)

Jensen divergence
JDðp; qÞ ¼Px qðxÞlog 2qðxÞ

pðxÞþqðxÞ þpðxÞlog 2pðxÞ
pðxÞþqðxÞ

� �
Symmetric and more robust modification of KL
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