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a b s t r a c t

Decomposing data into a small number of essential components is usually an efficient strategy for data
exploration, analysis and interpretation. Various workhorse methods such as principal component analysis
(PCA) and nonnegative matrix factorization (NMF) have been developed along this line of ideas. These
methods impose different constraints (e.g., orthogonality for PCA) to obtain compact or physically
meaningful bases. However, it is more natural to learn the constraints directly from data and use them
to guide the decomposition procedure. Also, existing methods mainly focus on inter-sample information
and the intra-sample structure information has rarely been explored. We propose a novel method, called
structure constraint nonnegative matrix factorization (SCNMF), which makes use of the intra-sample
structures to facilitate the decomposition process. SCNMF mimics the recognition mechanism of the human
brain to extract structure information, and has several attractive properties like always generating
orthogonal bases. For concept proof and illustration purpose, human face images are the primary data
used in our experiment studies, and the results suggest a superior performance of SCNMF over other
representative decomposition algorithms. To illustrate the generality of the proposedmethod, we also show
one example of the application of SCNMF in supervised learning of electrocorticography data.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Complex data can be decomposed into (maybe just a small
number of) essential components for efficient data representation
and analysis. A representative example is human face images,
which consist of only a few parts like eyes, mouth and nose. These
parts have their own geometric structures, which carry important
information for characterizing the similarity or distance between
different image samples. Interestingly, previous psychological and
physiological studies have also provided evidence for a part-based
recognition mechanism in the human brain [2]. Therefore, the
identification of intra-sample components and the usage of their
structure information can be of significant interest and importance
in confronting the need for complex data analysis. For concept
proof and illustration purpose, we primarily use face images as
data example unless explicitly stated otherwise (for different data
types, see the electrocorticography data example in Section 4);
also, the two words component and part are used interchangeably
hereafter.

Along the line of the decomposition idea, a variety of methods
have been developed to transform raw data into a (weighted)
combination of a set of components. For instance, principal compo-
nent analysis (PCA) [4], independent component analysis (ICA) [5],
nonnegative matrix factorization (NMF) [6–8] and many of their
variants [1,3,7] have been developed in previous studies. Among all
these methods, the NMF-family approaches are attractive since
physically meaningful parts can be obtained after matrix factoriza-
tion [9]. However, there are three important problems have not been
sufficiently addressed. First, to the best knowledge of authors,
neither NMF nor other existing matrix factorization methods expli-
citly take the intra-sample components and their structure informa-
tion into consideration. In addition, although prior knowledge of
sample labels has been considered in methods like local linear
embedding [10] and locality preserving projections [11], such
information is inter-sample correlation and the intra-sample infor-
mation does not receive sufficient attention it deserves. Therefore, it
is still possible to develop more accurate learning algorithms if one
can incorporate both inter- and intra-sample information into a
learning procedure. Second, for existing NMF method and its
variants, there is no guarantee that these methods will always
produce spatially aggregated and non-overlapping parts [9], which
makes the results less intuitive and interpretable. Efforts have been
made to improve the NMF-family methods to this end, e.g., by
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imposing sparsity constraint [12] or inter-sample locality restriction
[1]; however, such strategies may fail due to neglecting the intra-
sample structure information. For illustration purpose, we show
some example results from previous studies in Fig. 1. More speci-
fically, Fig. 1(a) presents the results produced by the NMF and GNMF
(Graph Regularized NMF) methods on the PIE dataset [1], and Fig. 1
(b) shows the face bases of the ORL dataset obtained by the NMF and
CNMF (Constrained NMF) methods [3]. One can conclude from Fig. 1
that many of the results are not separated parts but whole faces,
especially those in Fig. 1(b). Explicitly using the component structure
information as constraints in the NMF-family algorithms can gen-
erate non-overlapping parts, which is proposed and investigated in
this study. Third, another major concern of the NMF-family methods
is how to determine the dimension (that is, the number of columns)
of the basis matrix, which is usually chosen empirically without
rational explanation [13]. Note that if an algorithm can decompose
images into non-overlapping parts, it is natural to choose the
number of parts as the number of the columns of the basis matrix
because these columns are now orthogonal to each other. A few
previous studies have also attempted to obtain orthogonal bases,
however, at the price of compromising the non-negativity constraint
and thus may not be applicable to certain problems that have a strict
requirement for non-negativity [7].

To address the problems above, a structure constrained nonnega-
tive matrix factorization (SCNMF) method is proposed in this study.
Inspired by the recognition mechanism of the human brain [14,15],
the intra-sample structure information is extracted from an average
representation (inter-sample information) of multiple samples. The
obtained structure information is then explicitly imposed as con-
straints on the matrix decomposition procedure. This approach turns
out to be able to obtain non-overlapping parts, and have a superior
performance over other representative decomposition methods.

It is worthwhile to highlight the major contributions of this paper.

1. The recognition mechanism of the human brain based on
average representation is mimicked to extract the intra-
sample structure constraint, which turns out to be an effective
strategy according to our experiment results;

2. To the best knowledge of authors, the intra-sample structure
information mined from a population of samples has rarely
been explicitly incorporated into an NMF learning procedure,
which is addressed for the first time in this study;

3. The proposed SCNMF method provides a natural way to
determine the basis matrix dimension, and the obtained bases
(columns of the basis matrix) are guaranteed to be orthogonal.

The rest of the paper is organized as follows: in Section 2 the
related works are reviewed; the SCNMF method is described and
theoretically justified in Section 3; experiment results are pre-
sented and discussed in Section 4; finally, the conclusions and
potential future work are discussed in Section 5.

2. Related works

2.1. Structure information

Here structure information refers to spatial or geometrical
patterns of data. With the increase of data complexity nowadays,
the development of novel methods to efficiently identify and use
the structure information embedded in data is becoming more and
more important. Existing prevailing approaches like multidimen-
sional scaling [16], isomap [17], locally linear embedding [10], and
locality preserving projections [11] mainly focus on preserving

Fig. 1. Parts obtained by NMF and its variants. (a) Results obtained by NMF (left) and GNMF (right) on the PIE dataset (reprinted from [1]). (b) Results obtained by NMF (left)
and CNMF (right) on the ORL dataset (reprinted from [3]).
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