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a b s t r a c t

This paper investigates the passivity and passification problems for Markov jump genetic regulatory
networks with time-varying delays. A sampled-data control approach with non-uniform sampling
period is taken into account. By invoking the input-delay approach and employing the Lyapunov–
Krasovskii functional method, delay-dependent sufficient conditions on passivity are first given, upon
which a mode-dependent passification controller design procedure is then presented. Finally, two
numerical examples are provided to illustrate the applicability and effectiveness of the theoretical
results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The past decades have witnessed the rapid development of
genetic regulatory networks (GRNs) in mathematics, biology and
engineering applications (see [1–6] and the cited references
therein). It is a crucial issue to understand how mRNAs and
proteins work collectively and interact with each other to perform
the complicated biological functions, see, e.g., the process of
transcriptions and translations. Moreover, time delays subject to
the slow process of transcription, translation, and translocation
processes therein are commonly regarded as main obstacles to
reach desired dynamic behaviors, which may lead to instability of
GRNs. A large number of results on this issue have been reported,
see [7–14].

On another research frontier, with the wide utilization of
computers, the digital controllers have been adopted for control-
ling dynamical systems, which gives rise to the sampled-data
control approach. Compared with traditional feedback control
systems in continuous-time context, sampled-data control sys-
tems involve both continuous-time and discrete-time signals,

which can effectively reduce the information occupation and
improve the dynamic behavior [15,16]. However, some potential
issues accompanied by the employment of sampled-data control
approach under networked environment are challengeable, for
instance, non-uniform sampling periods induced by network loads
or sporadic faults. It is worth mentioning that numerous studies
about sampled-data control schemes have been conducted for
non-GRNs [17–20]. To the best of the author's knowledge, the non-
uniform sampled-data control problems for GRNs have not been
fully investigated, especially for Markov jump GRNs, which moti-
vates us for this study.

In addition, passivity and passification problems have been
paid increasing attention recently. Passivity theory was first
proposed in the circuit analysis [21] and then extended to many
other systems, including high-order nonlinear systems and elec-
trical network [22]. It can be widely applied to perform the
stability analysis, observer design and signal processing [23,24],
etc. Recently, the passivity of linear systems with delays and the
passivity of neural networks with time-varying delays have been
studied by employing appropriate storage Lyapunov–Krasovskii
functionals [25,26]. Although the importance of sampled-data
control and passivity property have been widely recognized, up
to now, the sampled-data problems of passivity and passification
for Markov jump GRNs with time-varying delays have not yet been
reported and remain open.
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Motivated by the aforementioned analysis, this paper investigates
the passivity and passification problems for Markov jump GRNs by a
non-uniform sampled-data approach. Compared with the existing
results, a new Markov jump GRNs model is established to describe
the non-uniform sampled-data control scheme by utilizing the input
delay approach [27,28]. Some new passivity conditions are presented
in the forms of linear matrix inequalities (LMIs) by applying
Lyapunov–Krasovskii functional method. Based on the obtained
conditions, a further mode-dependent passification controller design
procedure is provided to guarantee the required performance of the
resulting closed-loop Markov jump GRNs.

The remainder of this paper is organized as follows. Section 2
gives some preliminaries and formulates the passivity and passi-
fication problems. In Section 3, sufficient conditions are derived to
ensure the passivity of Markov jump GRNs by the sampled-data
controllers. Section 4 gives two numerical examples to show the
effectiveness of the proposed passification results. Finally, the
paper is concluded in Section 5.

Notation: The notation used in this paper is fairly standard. Rn

denotes the n dimensional Euclidean space, Rm�n represents the
set of all m� n real matrices. I and 0 represent identity matrix and
zero matrix with appropriate dimensions, respectively. L2 0;1½ Þ is
the space of square-integrable vector functions over 0;1½ Þ. The
notation P40 means P is real symmetric and positive definite. The
superscript “T” denotes matrix transposition. The notation X4Y
where X and Y are symmetric matrices means that X�Y is positive
definite. In addition, in symmetric block matrices, n is used as an
ellipsis for the terms that are introduced by symmetry and diagf⋯g
denotes a block-diagonal matrix. For the notation ðΩ;F ;PÞ, Ω
represents the sample space, F is the σ-algebra of subsets of the
sample space and P is the probability measure on F . E �f g stands
for the mathematical expectation. Finally, all matrices, if not
explicitly stated, are assumed to have compatible dimensions.

2. Problem formulation and preliminaries

Consider the Markov jump GRNs defined in a complete prob-
ability ðΩ;F ;PÞ, which can be described by the following equa-
tions [13]:

_xðtÞ ¼ �AðrtÞxðtÞþBðrtÞgðyðt�σðtÞÞÞþUðrtÞuðtÞþHxðrtÞϖxðtÞ
_yðtÞ ¼ �CðrtÞyðtÞþDðrtÞxðt�τðtÞÞþVðrtÞvðtÞþHyðrtÞϖyðtÞ:

(
ð1Þ

xðtÞ ¼ x1ðtÞ;…; xnðtÞ½ �T ARn, yðtÞ ¼ y1ðtÞ;…; ynðtÞ
� �T ARn, xkðtÞ and

yk(t) ðk¼ 1;2;…nÞ denote the concentrations of mRNA and protein
of the kth node at time t, respectively. The nonlinear function
gðyðtÞÞ ¼ g1ðy1ðtÞÞ;…; gnðynðtÞÞ

� �T represents the feedback regula-
tion of the protein on the transcription. The control inputs
uðtÞ ¼ u1ðtÞ;…;unðtÞ½ �T ARn and vðtÞ ¼ v1ðtÞ;…; vnðtÞ½ �T ARn satisfy
ukðtÞ and vk(t) ðk¼ 1;2;…nÞAL2 0;1½ Þ. ϖxðtÞ ¼ ϖx1ðtÞ;…;ϖxnðtÞ½ �T
ARn and ϖyðtÞ ¼ ϖy1ðtÞ;…;ϖynðtÞ

� �T
ARn denote the external

disturbances satisfying ϖxkðtÞ and ϖykðtÞðk¼ 1;2;…nÞAL2 0;1½ Þ.
AðrtÞ ¼ diagfa1;…; ang, CðrtÞ ¼ diagfc1;…; cng and DðrtÞ ¼ diag
fd1;…; dng denote the decay rates of mRNA, protein and the
translation rate of the kth node, respectively. BðrtÞ ¼
ðBijðrtÞÞARn�n is the coupling matrix of the GRNs. τðtÞ and σðtÞ
denote time-varying translation delay and feedback regulation
delay, respectively. All AðrtÞ, BðrtÞ, CðrtÞ, DðrtÞ, UðrtÞ, V ðrtÞ, HxðrtÞ,
HyðrtÞ are constant matrices with appropriate dimensions for a
fixed mode rt and all modes can be detected.

The parameter rt ðtZ0Þ denotes a right-continuous Markov
process on the given probability space ðΩ;F ;PÞ, which takes
values in a finite set I9f1;…;Ng with generator

Π ¼ πij
� �

; 8 i; jAI described as

PrðrtþΔt ¼ j : rt ¼ iÞ ¼
πijΔtþoðΔtÞ if ia j
1þπiiΔtþoðΔtÞ if i¼ j;

(
ð2Þ

with Δt40, limðoðΔtÞ=ΔtÞ ¼ 0 and πijZ0 (i; jAI , ja i) is the
transition rate from mode i at time t to mode j at time tþΔt,
while

PN
j ¼ 1 πij ¼ 0; 8 iAI .

For the sake of convenience, denote the Markov process rt
ðtZ0Þ by i indices [29–31]. Consequently, system (1) can be
rewritten as

_xðtÞ ¼ �AixðtÞþBigðyðt�σðtÞÞÞþUiuðtÞþHixϖxðtÞ
_yðtÞ ¼ �CiyðtÞþDixðt�τðtÞÞþVivðtÞþHiyϖyðtÞ:

(
ð3Þ

In this paper, the control input signals are generated by a
sampled-data controller. More precisely, the control signals are
represented with a sequence of sampling times:
0¼ t0ot1o⋯otko⋯, and limk-1tk ¼1, such that only uðtkÞ
and vðtkÞ are available for interval tkrtotkþ1. Then, the mode-
dependent state feedback controller can be designed as

uðtkÞ ¼ KixxðtkÞ
vðtkÞ ¼ KiyyðtkÞ tkrtotkþ1

(
; ð4Þ

where Kix and Kiy are the state feedback gain matrices. Therefore, it
can be obtained that

_xðtÞ ¼ �AixðtÞþBigðyðt�σðtÞÞÞþUiKixxðtkÞþHixϖxðtÞ
_yðtÞ ¼ �CiyðtÞþDixðt�τðtÞÞþViKiyyðtkÞþHiyϖyðtÞ:

(
ð5Þ

Moreover, the sampling period T defined as T : tkþ1�tk is not
constant. Noting that tk ¼ t�ðt�tkÞ : t�dðtÞ holds for tkrtotkþ1,
then system (5) is rewritten as

_xðtÞ ¼ �AixðtÞþBigðyðt�σðtÞÞÞþUiKixxðt�dðtÞÞþHixϖxðtÞ
_yðtÞ ¼ �CiyðtÞþDixðt�τðtÞÞþViKiyyðt�dðtÞÞþHiyϖyðtÞ:

(
ð6Þ

Remark 1. The study of Markov jump GRNs has received much
attention due to their theoretical importance and potential appli-
cations. It is worth mentioning that most of the researches mainly
focus on the stability problem or the state estimation problem of
GRNs and have achieved remarkable results [6,12,32,33]. In this
paper, we investigate the non-uniform sampled-data control
scheme to solve the passivity and passification problems of
Markov jump GRNs.

Remark 2. The input-delay approach has been an effective
method to deal with the non-uniform sampling case, which is
more complicated but more practical in the applications. By
introducing the concept of virtual delay, the sampled-data control
system can be transformed to the continuous-time system with
time-varying delays, which is the key idea of this paper.

Throughout this paper, the following assumptions are given.

Assumption 1. The time-varying delays satisfy

0oτðtÞrτM ; 0oσðtÞrσM ; ð7Þ
where τM , σM are known positive constants.

Assumption 2. The sampling period is bounded by h ðh40Þ, then
it follows that

0otkþ1�tkrh; 0odðtÞrh:

Assumption 3 (Wei et al. [11]). The nonlinear regulatory function
giðtÞ ði¼ 1;2;…;nÞ is a monotonically increasing function with
saturation, which satisfies 0rgiðaÞ=ark for any a40, or
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