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a b s t r a c t

Absence epilepsy, a neurological disorder, is characterized by the recurrence of seizures, which have
serious impact on the sufferers' daily life. The seizure detection has a great importance in the diagnosis
and therapy of epileptic patients. Visual inspection of the electroencephalogram (EEG) signals for
detection of interictal, pre-ictal and ictal activities is a strenuous and time-consuming task due to the
huge volumes of EEG segments that have to be studied. In this study, we proposed a novel automatic
detection method based on the altered compressibility of EEG during the three states with compressive
sensing. To evaluate the proposed method, segments of interictal, pre-ictal and ictal EEG segments (100
segments in each state) were used. Two entropies, namely the Sample Entropy (SE) and the permutation
Entropy (PE), and Hurst Index (HI) were extracted respectively from the segments to compare with the
proposed method. Significant features were selected using the ANOVA test. After evaluating the
performance of the selected features by four classifiers (Decision Tree, K-Nearest Neighbor, Discriminant
Analysis, Support Vector Machine) respectively, the results show that the proposed method can achieve
the highest accuracy of 76.7%, which is higher than HI (55.3%), sample entropy (71%), and permutation
entropy (73%). Hence, the altered compressibility of EEG with CS can act as a good biomarker for
distinguish seizure-free, per-seizure and seizure state. In addition, compressive sensing requires less
energy but has competitive compression ratio compared to traditional compression techniques, which
enables our method to tele-monitoring of epilepsy patients using wireless body-area networks in
personalized medicine.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Absence epilepsy is a common form of epilepsy, accounting for
10–17% of all cases of epilepsy diagnosed in school-aged children
[1,2]. Absence seizures are short in duration from few seconds to
around a minute of impaired consciousness without major motor
symptoms and may recur over 100 times a day, which would have
significant impact on the educational development of sufferers [3].
Therefore, novel therapeutic approaches are urgently being sought
to prevent seizure occurrence. Nowadays, surgery and stimulation
methods have recently gained greater prominence and detection
of absence seizures is the basis for these methods. Thus it is critical
to find biomarkers which can be used to discriminate seizure-free,
pre-seizure and seizure state for the patients with epilepsy.

EEG as a non-invasive recording of electrical activity from the
scalp has become one of the most useful tools for studying the

cognitive processes and the physiology/pathology of the brain,
especially the processes involved in absence seizures [4–7]. Epilep-
tic seizure detection techniques for finding the modification of EEG-
based indexes can be divided into four categories: time domain,
frequency domain, time–frequency domain, and nonlinear methods
[8–11]. The time domain method searches for periodic, rhythmic
patterns in EEG for the seizure state and provides a measure for
rhythmicity [12]. In the frequency domain, seizure detection relies
on the differences in the frequency domain characteristics of EEG
[13], such as the 3–4 Hz spike-and-wave discharges (SWD) in EEG
during the seizure state. Wavelet transform as a typical time–
frequency method has also been used to capture and localize
transient features like the epileptic spikes [14]. Nonlinear measures,
such as sample entropy (SE) [15] and permutation entropy (PE) [16],
can quantify the complexity of a time series and be used to track
transient dynamics of EEG recordings.

In clinical application, portable EEG systems based on wireless
sensors can be used for long term remote monitoring the patients
provided they can solve technological problems (miniaturization and
energy efficiency) [17]. In order to reduce airtime energy-hungry
wireless links, data compression methods are used to compress EEG
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signal and then transmit. In this paper, the compression problem is
viewed from a different perspective: the compressive systems not
only reduce the throughput data but also discriminate seizure-free,
pre-seizure and seizure state for the patients with epilepsy. A similar
study has been applied to distinguish among patients with Alzhei-
mer disease (AD), mild cognitive impaired (MCI) subjects and normal
healthy elderly [18,19]. And their result first showed that the
compressibility can be a good marker to differentiate AD EEG from
both MCI and healthy controls.

In this paper, we take full advantage of the altered compressi-
bility of EEG in the transition of brain activities towards an absence
seizure with compressive sensing (CS) [20] to discriminate seizure-
free, pre-seizure and seizure state. The EEG in the seizure state
exhibits three characteristics that make them reliable to be com-
pressed: lower frequency (increase of relative power of delta and
theta) [21], decreased complexity (increase of regularity/predict-
ability) [22,23], and stronger synchronization among multi-channel
EEG recordings [24]. The CS adopted here, as an emerging data
compression methodology, has superior performance to other
conventional data compression methods such as wavelet compres-
sion in compressing non-sparse EEG signals [25]. Besides, compared
to wavelet compression, CS can reduce energy consumption while
achieving competitive data compression ratio [26], which enables
our method for tele-monitoring patients with epilepsy through
wireless body-area networks in personalized medicines.

The rest of the paper is organized as follows. Section 2 briefly
introduces the CS methodology. Section 3 presents the experiments
and results. Section 4 discusses the results and concludes the paper.

2. Methods

Compressive sensing (also known as compressed sensing) [20] is a
signal processing technique for efficiently acquiring and reconstruct-
ing a signal. This method takes advantage of the signal's sparseness or
compressibility in some domain, allowing the signal to be represented
by relatively few measurements in that domain. This section mainly
discusses the key theoretical concepts of CS method.

2.1. Signal sparsity

Using N � N basis matrix (also known as dictionary matrix)
Ψ ¼ ½ψ1 jψ2…jψN� with the vectors ψ i

� �
as columns, a one-

dimensional discrete-time signal x of length N (viewed as an N �
1 column vector) can be expressed as

x¼Ψ s¼
XN

i ¼ 1

siψ i ð1Þ

where s is the N � 1 column vector of weighting coefficients.
Clearly, x and s are equivalent representations of the signal, with x
in the time and s in the Ψ domain.

The signal x is K-sparse if it is a linear combination of only K
basis vectors, which means that only K of the si coefficients in
(1) are nonzero and (N–K) are zero. In the practical application,
signal x is compressible if s in the formula (1) has just a few large
coefficients and many small coefficients.

2.2. Signal compression and reconstruction

The compressive sensing employs non-adaptive linear projections
that preserve the structure of the signal, and the signal is then
reconstructed from these projections using an optimization process [20].

In the compression system, a signal of length N, denoted by
xAℝN�1, is compressed by CS with a full row-rank matrix, denoted

by ΦAℝM�NðM{N;Rank Φð Þ ¼MÞ as follows:

y¼Φx ð2Þ
where y is the compressed data, and Φ is called the measurement
matrix, which is set in advance. CS algorithms use the compressed
signal y and the sensing matrix Φ to reconstruct the original
signal. The accuracy of the reconstructed signal directly relies on
the key assumption that the original signal is K-sparse (K{N).
When this assumption does not hold, such as EEG, we can seek a
dictionary matrix, denoted by Ψ AℝN�N , so that x is K-sparse
(K{N) in this Ψ domain. Then the CS model can be re-written as

y¼ΦΨ s¼ Θs ð3Þ
where Θ¼ΦΨ AℝM�N .

In the reconstruction system, CS algorithms can firstly recover s
using y and Θ, and then recover the original signal x by x¼Ψ s.
While the compression system is largely underdetermined (M{N
in (2) and (3)), there is an infinite number of x for a given y.
However, since the signal x we wish to reconstruct is K-sparse, CS
algorithms thus aim to find the sparest solution. This corresponds
to solve the following ℓ0 optimization problem [27]:

min
s

s0 subject to y¼Θs ð4Þ

where the ℓ0 norm j j U j j 0 counts the number of non-zero entries in s.

2.3. Incoherent measurement matrix

The minimum acceptable M that allows perfect reconstruction
of signal x is not only related to the sparsity K of x in the dictionary
matrix Ψ , but also to the coherence μ between Φ and Ψ . The
coherence measures the largest correlation between any two
elements of Φ and Ψ , which is defined as follows:

μ Φ;Ψ
� �¼

ffiffiffiffi
N

p
U max
1r i;jrN

ϕi;φj

���
��� ð5Þ

and if

MZCr Uμ2 Φ;Ψ
� �

UK U log N ð6Þ
for some positive constant C, the solution to (6) is exact with
overwhelming probability. Therefore, the smaller the coherence,
the smaller the value of M can be.

In order to construct an ideal measurement matrixΦ, one should
have a hard search based on the dictionary matrix Ψ . Fortunately,
incoherence can be guaranteed with high probability by selecting Φ
as a random matrix [20]. In practical application, the random matrix
Φ is often generated by independent and identically distributed
Gaussian random variables or by Bernoulli random variables [28].

3. Experiments and results

3.1. EEG recordings

EEG recordings were obtained from nine patients (five males and
four females) aged from 8 to 21 years old with absence epilepsy. The
study protocol had taken consent from the ethics committee of Peking
University People's Hospital and the patients had signed informed
consent that their clinical data might be used and published for
research purposes. The EEG data were recorded according to the sites
defined by the standard 10–20 international system at a sampling rate
of 256 Hz by the Neurofile NT digital video EEG system. Nineteen
electrodes were used and the impedance levels were set at less than
5 kΩ and they were filtered with a frequency band of 0.5 and 35 Hz
which include the relevant bands of absence EEG recordings.

For the investigation in present work, interictal, pre-ictal, and ictal
EEG epochs were selected and dissected from seizure-free, pre-
seizure and seizure states respectively. The timing of onset and offset
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