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a b s t r a c t

The paper introduces an alternative approach to time-series prediction for stock index data using
Interval Type-2 Fuzzy Sets. The work differs from the existing research on time-series prediction by the
following counts. First, partitions of the time-series, obtained by fragmenting its valuation space over
disjoint equal sized intervals, are represented by Interval Type-2 Fuzzy Sets (or Type-1 fuzzy sets in
absence of sufficient data points in the partitions). Second, an Interval Type-2 (or type-1) fuzzy
reasoning is performed using prediction rules, extracted from the (main factor) time-series. Third, a
type-2 (or type-1) centroidal defuzzification is undertaken to determine crisp measure of inferences
obtained from the fired rules, and lastly a weighted averaging of the defuzzified outcomes of the fired
rules is performed to predict the time-series at the next time point from its current value. Besides the
above three main prediction steps, the other issues considered in the paper include: (i) employing a new
strategy to induce the main factor time-series prediction by its secondary factors (other reference time-
series) and (ii) self-adaptation of membership functions to properly tune them to capture the sudden
changes in the main-factor time-series. Performance analysis undertaken reveals that the proposed
prediction algorithm outperforms existing algorithms with respect to root mean-square error by a large
margin (Z23%). A statistical analysis undertaken with paired t-test confirms that the proposed method
is superior in performance at 95% confidence level to most of the existing techniques with root mean
square error as the key metric.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Prediction of a time-series [1] refers to determining the
amplitude of the series at time tþ1 from its previous m sample
values located at time: t, t�1, t�2, …., t�(m�1) for a finite
positive integer m. An m-th order time-series prediction involves
all the m previous sample values directly for its forecasting/
prediction [2,3]. In this paper, we, for the sake of simplicity,
however, use a first order prediction of time-series, where the
(tþ1)-th sample of the time-series directly depends only on the
sample value at time ðtþ1�dÞ, where d denotes the time-delay,
although all the previous m sample values are required to design

the prediction rules. There exists a vast literature on prediction of
time-series for real processes, including rainfall [4,5], population
growth [6], atmospheric temperature [7], university enrollment
for students [8–11], economic growth [12] and the like. This paper
is concerned with stock index, the time-series of which describing
close price [13], is characterized by the following four attributes:
non-linear [14], non-deterministic, non-stationary [15] and non-
Gaussian jointly.

Designing a suitable model for stock index prediction requires
handling the above four characteristics jointly. Although there
exist several attempts to model time-series using non-linear
oscillators [16], non-linear regression [17], adaptive auto-
regression [18], Hzorth parameters [19] and the like, none of these
could accurately model these time-series [20] for their inherent
limitations to capture all the four characteristics jointly.

The logic of fuzzy sets plays a promising role to handle the
above problems jointly. First, the nonlinearity of time-series is
modeled by the nonlinearity of membership functions and their
nonlinear mapping from antecedent to consequent space of fuzzy
production rules. Second, the non-deterministic characteristics of
the time-series (that might occur due to randomness in a wide
space), is here significantly reduced because of its occurrence in
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one of a few equal sized partitions of the universe of discourse.
Third, the non-stationary characteristics of the time-series that
offers a correlation of signal frequencies with time [15] is avoided
in fuzzy modeling by time-invariant models of membership
functions [8]. Lastly, the non-Gaussian feature may be relaxed as
locally Gaussian within small intervals (partitions) of the time-
series. Thus, fuzzy sets are capable of capturing the uncertainty/
imprecision in time-series prediction that might arise because of
the above four hindrances.

The inherent power of fuzzy sets to model uncertainty of
time-series has attracted researchers to employ fuzzy logic in
time-series prediction. Song et al. [8–11] pioneered the art of
fuzzy time-series prediction by representing the time-series
value at time t�1 and time t as fuzzy membership functions
(MFs) and connected them by fuzzy implication relations for all
possible time t in the time-series. If there exist n possible discrete
values of time t, then we would have n�1 possible fuzzy
implication relations. Song et al. combined all these implication
relations into a single relation R by taking union of all of these
relations. The prediction involves first fuzzifying the crisp value
of the time series at time t and then using composition rule of
inference to determine the MF of the predicted time series at
time tþ1 using R as the composite time-invariant implication
relation. Lastly, they defuzzified the result to obtain the crisp
value of the time-series at time tþ1.

The fundamental deviation in the subsequent work by Chen
[21] lies in grouping of rules having common antecedents. Thus
during the prediction phase, only few rules whose antecedent
match with the antecedent of the fuzzified time-series value at
time t only, need to be fired to obtain multiple MFs of the inferred
consequences, one for each fired rule, an averaging type of
defuzzification of which yields the actual inference at time tþ1.
Hwang et al. considered a variation time-series [22] by taking the
difference of two consecutive values of the time-series, and used
max-product compositional rule of inference to predict the infer-
ence of the variation at time tþ1 from its previous values. A
weighted average type of defuzzification was used to obtain the
predicted value of the time-series at time tþ1. Cai et al. [23]
introduced genetic algorithm to determine the optimal weight
matrix for transitions of partitions of a given time-series from each
day to its next day, and used the weight matrix to predict the
time-series at time tþ1 from its value at time t. In [7], Chen et al.
extended the work of Hwang et al. by first introducing a concept of
secondary factors in the prediction of main factor time-series.
There exists a vast literature on time-series prediction using fuzzy
logic. A few of these that deserve special mention includes
adaptive time-variant modeling [24], adaptive expectation

modeling [25], Fibonacci sequence [26], Neural networks [27,28],
Particle Swarm Optimization [29] based modeling, fuzzy cognitive
maps and fuzzy clustering [30], bi-variate [31,32] and multi-
variate [33–37] modeling and high order fuzzy multi-period
adaptation model [38] for time-series prediction.

Most of the traditional works on stock index prediction devel-
oped with fuzzy logic [39] employ type-1 (T1) fuzzy reasoning to
predict future stock indices. Although T1 fuzzy sets have proved
their excellence in automated reasoning for problems of diverse
domains, including fuzzy washing machines [40,41], fuzzy color
TV [42] etc., they have limited power to capture the uncertainty of
the real world problems [43]. Naturally, T1 fuzzy logic is incom-
petent to stock (and general time-series) prediction problems. The
importance of Interval Type-2 Fuzzy Set (IT2FS) over its type-1
counterpart in chaotic time-series prediction has already been
demonstrated by Karnik and Mendel [44]. There exist a few recent
works attempting to model stock prediction problem using type-2
fuzzy sets [45,46]. These models aim at representing a single
(interval) type-2 membership function (MF), considering three
distinct stock data items, called close, high and low prices [13].
Here too, the authors partitioned each of the above three time-
series into intervals of equal size, and represented each partition
as T1 fuzzy set. They constructed fuzzy If-Then rules describing
transitions of stock index price from one day to the next day for
each of the above time series. During prediction, they identified a
set of rules containing antecedent fuzzy sets corresponding to
current stock prices, obtained union and intersection of the
consequents of the rules to derive (interval) type-2 fuzzy infer-
ences and employed center average defuzzifiers to predict the
stock price for the next day. Bagestani and Zare [46] extended the
above work by adaptation of the structure of the membership
functions and weights of the defuzzified outputs to optimize root
mean square error. In addition, the latter work employed center of
gravity defuzzifier in place of center average defuzzifier used
previously. The present paper is an extension of the seminal work
of Chen et al. [47] by the following counts.

1. In order to represent the close price c(t) within a partition
(interval), we represent each short duration contiguous fluc-
tuation of c(t) in a given partition of the universe of c(t) by a
type-1 MF, and take union of all these type-1 MFs within a
partition to represent it by an Interval Type-2 Fuzzy Set (IT2FS).
Under special circumstances, when a partition includes one or a
few contiguous data points only, we represent the partition by
a type-1 MF only.

2. The antecedent and consequent of fuzzy prediction rules of the
form Ai-Aj (extracted from the consecutive occurrence of data
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