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a b s t r a c t

This paper deals with the problem of stability analysis of generalized neural networks with time delays.
It should be noted that additive time-varying delays are taken in the state of the neural networks. A
novel augmented Lyapunov–Krasovskii (L–K) functional which involves more information on the
activation function of the neural networks and upper bound of the additive time-varying delays is
constructed. By introducing some zero equations and using the reciprocal convex combination technique
and Finsler's lemma, an improved delay-dependent stability criterion is derived in terms of linear matrix
inequalities (LMIs), which can be efficiently solved via standard numerical software. Finally, three
numerical examples are provided to demonstrate the less conservatism and effectiveness of the
proposed results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Neural networks have substantial capacity in information proces-
sing, due to which, they have been used in many areas such as signal
processing, image decryption, pattern recognition, associative mem-
ories and fixed-point computations [1–8]. In these applications, one
important task is to checkout whether the equilibrium points of the
considered networks are stable or not because the applications
heavily depend on the dynamic behavior of the equilibrium points.
It should be noted that, because of signal transmissions among
neurons and the finite switching speed of amplifiers in the imple-
mentation of electrical circuits, time delays are an unavoidable factor
to be considered in real systems. The existence of time delays may
cause oscillation, divergence and even instability. Therefore, stability
of neural networks with time-delays has drawn a great deal of
attention in recent years [9–24]. Stability results for neural networks
may be classified into two categories, i.e., delay-dependent and
delay-independent ones. It should be noted that, when the size of
time-delay is small, delay-dependent stability criteria are less con-
servative than delay-independent ones. A main objective of stability
problems is to find maximum allowable upper bounds (MAUB) of
time-delays, which means our designed delayed neural networks
remain asymptotically stable up to MAUB. In order to enhance the

upper bound of time delays, how to construct L–K functional and
estimate the time-derivative of L–K functional plays a virtual role. In
this regard, various methods and approaches have been proposed to
drive stability criteria for delayed neural networks such as augmen-
ted L–K functional, discretized L–K functional, model transformation,
free-weighting matrices, delay-partitioning technique, reciprocally
convex combination, quadratic convex combination and so on. For
example, Zhang et al. [11] have presented the weighting-delay-based
stability criteria for neural networks with time-varying delays by
dividing the delay interval into several sub-intervals with weighted
parameters, which lead to less conservative result than fixed delay-
partitioning methods. By introducing suitable L–K functional and
some zero integral inequalities with reciprocally convex optimization
approach, stability analysis of neural networks with time-varying
delays has been investigated in [16]. Very recently, Kwon et al. [17]
have showed the improved stability criteria for neural networks by
introducing some new terms in L–K functional that contains more
information on activation functions.

In most of the reported results on stability criteria for delayed
neural networks, time-delays have been taken in a singular or
simple form in the state variable. Meanwhile, the authors in [28]
have introduced a new type of neural networks which contains
two additive time-varying delay components in the state. Such a
system may be encountered in many practical situations such as
remote control and networked control. For example, in networked
controlled systems, signals transmitted from one point to another
may experience a few segments of networks, which can possibly
induce successive delays with different properties due to the
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variable network transmission conditions [29,30]. Therefore, the
problem of stability analysis of neural networks with two succes-
sive time-varying delays in the state has received more and more
attention and become more popular in recent years [31–35]. In
[32,33], improved stability criteria of neural networks with two
additive time-varying delay components have been studied by
utilizing reciprocally convex and convex polyhedron approaches,
which can lead to less conservative results than in [28,31]. In
addition, they have not utilized the information about the lower
bound of the activation function in L–K functional. Very recently,
the problem of robust stability analysis of neural networks with
uncertain parameter has been derived in the work [35].

On the other hand, different types of neural networks such as
recurrent back-propagation neural networks, optimization type
neural networks, Hopfield neural networks, bidirectional associa-
tive memory neural networks and cellular neural networks have
been studied in the past few decades. These neural networks have
been applied in various fields such as signal processing, parallel
computing, optimization problems, secure communication, chemi-
cal biology, engineering and so on. For example, the quadruple-tank
process can be modeled in the form of neural networks [36], in
which four interconnected water tanks and two pumps are com-
posed. In this problem, voltages to the two pumps are considered as
inputs and the water level of the lower two tanks is considered as
outputs, and the main objective is to control the level of the two
lower tanks using the two pumps. In addition, according to states of
the neurons (internal/external), neural networks may be classified
into two types, namely local field neural networks (LFNNs) and
static neural networks (SNNs). From the existing literature, it can be
seen that most of the authors have considered the problem of
stability analysis of LFNNs [9–17] and SNNs [18–24], separately. It is
noted that these two types are not always equivalent, however, it is
possible to transfer them into equivalent forms from one to each
other under some assumptions. But these assumptions are not
always reasonable in many real life applications [10]. In this regard,
a unified model has been considered in the works [10,25–27,34]
and it is termed as generalized neural networks (GNNs), which is
the combination of both LFNNs and SNNs. Therefore, it is enough to
study the stability analysis of GNNs instead of studying the stability
analysis of LFNNs and SNNs, separately. It should be pointed out
that back-propagation neural networks and optimization type
neural networks can be modeled in the form of SNNs, whereas
Hopfield neural networks, bidirectional associative memory neural
networks and cellular neural networks can be modeled in the form
of LFNNs. Thus, GNNs have been applied in the areas where
different types of neural networks are used.

For example, exponential stability of cellular neural networks
(i.e. LFNNs) with both interval time-varying delays and general
activation functions has been considered in [15], whereas condi-
tions for the stability analysis of static recurrent neural networks
(i.e. SNNs) with interval time-varying delay have been derived in
[20,23]. In [23], a new augmented L–K functional has been
proposed for the stability analysis of SNNs with interval time-
varying delays. Stability analysis for GNNs with time-varying
delays has been investigated in [26] and to improve the stability
region, an improved integral inequality approach has been used to
handle the cross-product terms in [27]. Recently, by using free-
weighting matrix and reciprocally convex combination techniques,
a delay-dependent stability criterion for generalized continuous
neural networks with two delay components has been derived in
[34]. To the best of our knowledge, there are a very small number
of works that deal with the stability analysis of GNNs with singular
time-varying delays and there is a single work on the stability
analysis of GNNs with additive time-varying delays. Therefore,
there is enough room to improve the stability conditions for GNNs
with successive delay components in the state, which is the main

motivation of this paper. Also, stability results of these model
become more general than the ones in the existing literature.

Motivated by the above discussions, a new delay-dependent
stability criterion for generalized neural networks with time-
delays is proposed in this paper. It is noted that two successive
time-varying delay components are taken in the state. By fully
using the available information about time-delays and activation
functions, a novel augmented L–K functional is constructed. By
utilizing reciprocal convex combination technique and Finsler's
lemma, and by proposing some zero equations, the improved
delay-dependent stability criterion is derived in terms of LMIs.
Finally, three numerical examples are given to show the effective-
ness of the proposed method and this shows that we can obtain
large maximum delay bounds than ones in recent existing works.

The main contributions and improvements of this paper are
summarized as follows:

� Our main aim of this paper is to find a less conservative
stability criterion for the network. In order to reduce the
conservatism, a novel augmented L–K functional is introduced
which includes more information about successive time delays
and slope of the activation function. Such type of L–K functional
has not yet been considered in the previous studies [31–34] on
the stability of neural networks with successive time-varying
delay components.

� Inspired by the works [16,17], some zero equations which
would include more quadratic and integral terms are intro-
duced. These terms are merged with the time derivative of L–K
functional, which in turn can enhance the feasibility region of
stability criterion.

Notations: Throughout this paper, the superscripts T and �1
mean the transpose and the inverse of a matrix respectively. Rn

denotes the n-dimensional Euclidean space, Rn�m is the set of all
n�m real matrices. For symmetric matrices P and Q ; P4Q
(respectively, PZQ ) means that the matrix P�Q is positive definite
(respectively, non-negative). In, 0n and 0m;n stand for n� n identity
matrix, n� n and n�m zero matrices, respectively and symmetric
term in a symmetric matrix is denoted by ⋆. X? denotes a basis for
the null-space of X. If the Matrices are not explicitly stated, it is
assumed to compatible dimensions.

2. System description and preliminaries

Consider the following generalized neural networks (GNNs)
with additive time-varying delays:

_yðtÞ ¼ �AyðtÞþW0hðW2yðtÞÞþW1hðW2yðt�d1ðtÞ�d2ðtÞÞÞþu; ð1Þ
where yðtÞ ¼ y1ðtÞ y2ðtÞ ⋯ ynðtÞ

� �T , yi(t) is the state of the ith
neuron at time t; A¼ diagfa1; a2;…; ang is a positive diagonal
matrix; W0ARn�n, W1ARn�n and W2ARn�n are the connec-
tion weight matrices; hðW2yð�ÞÞ ¼ ½h1ðW21yð�ÞÞ h2ðW22yð�ÞÞ ⋯
hnðW2nyð�ÞÞ�T represents the neuron activation function, where
W2i denotes the ith row vector of the matrix W2; and
u¼ u1 u2 ⋯ un½ �T is an external constant input vector.

The neuron activation function hið�Þ is continuous and bounded
[8,25], and there exist constants k�

i and kþ
i such that

k�
i rhiðβ1Þ�hiðβ2Þ

β1�β2
rkþ

i ; i¼ 1;2;…;n; ð2Þ

for any β1;β2AR, and β1aβ2.
Under the assumption of the activation function in (2), system

(1) has an equilibrium point y⋆ ¼ ½y⋆1 y⋆2 … y⋆n �, i.e., 0¼
�Ay⋆þW0hðW2y⋆ÞþW1hðW2y⋆Þþu. Utilizing the transformation
xðtÞ ¼ yðtÞ�y⋆, one can shift the equilibrium point from y⋆ to the
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