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a b s t r a c t

In this paper, a novel parametric-insensitive nonparallel support vector regression (PINSVR) algorithm
for data regression is proposed. PINSVR indirectly finds a pair of nonparallel proximal functions with a
pair of different parametric-insensitive nonparallel proximal functions by solving two smaller sized
quadratic programming problems (QPPs). By using new parametric-insensitive loss functions, the
proposed PINSVR automatically adjusts a flexible parametric-insensitive zone of arbitrary shape and
minimal size to include the given data to capture data structure and boundary information more
accurately. The experiment results compared with the ε-SVR, ε-TSVR, and TPISVR indicate that our
PINSVR not only obtains comparable regression performance, but also obtains better bound estimations.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Powerful tools for data classification and regression in machine
learning, support vector machines (SVMs) [1–5], including support
vector classification (SVC) and support vector regression (SVR),
have been successfully applied to a variety of real-world problems
[6–12] in the past decades. The structural risk minimization
principle is implemented in SVMs by minimizing the upper bound
of the generalization error [13,14]. For SVR, i.e., ε-support vector
regression (ε-SVR) [1–4], it finds a function f(x) such that, on one
hand, more training samples locate in the ε-intensive tube
between f ðxÞ�ε and f ðxÞþε, on the other hand, the function f(x)
is as flat as possible. ε-SVR does not care about errors as long as
the samples are inside the ε-intensive tube, only those outside the
ε-intensive tube are punished.

Recently, in the spirit of twin support vector machine (TWSVM)
[15], some novel SVR algorithms for data regression, including
ε-twin SVR (ε-TSVR) [16] and twin parametric insensitive SVR
(TPISVR) [17], have been proposed. These algorithms determine
indirectly the regressor through a pair of nonparallel proximal
functions solved by two smaller sized QPPs instead of the larger

single one in the ε-SVR, which make them have the faster learning
speed than classical ε-SVR. For ε-TSVR, it determines two
ε-insensitive proximal functions by using the ε-insensitive loss
function, so it has better regression performance. However, both ε-
SVR and ε-TSVR assume that the noise level on training data is
uniform throughout the domain, or at least, its functional depen-
dency is known beforehand [17–20]. The assumption of a uniform
noise model is not always satisfied in the real-world. For instance,
for the heteroscedastic noise structure, that is, the noise strongly
depends on the inputs. For TPISVR, it determines the parametric
insensitive down- and up-bound functions by using the
parametric-insensitive loss function, so it is more suitable for the
case that the noise is heteroscedastic. However, TPISVR only aims
at minimizing the empirical risk, but not embeds any structural
risk of data into the learning process, which leads the down- and
up-bound functions to be possibly contaminated by noise samples.

In this paper, we propose a novel SVR model for data regres-
sion, termed the parametric-insensitive nonparallel support vector
regression (PINSVR). Our PINSVR indirectly finds a pair of non-
parallel proximal functions with a pair of different parametric-
insensitive nonparallel proximal functions by solving two smaller
sized QPPs, which leads it to be more suitable for the hetero-
scedastic noise structure. By introducing the parametric-
insensitive loss functions, our PINSVR automatically adjusts a
flexible parametric-insensitive zone of arbitrary shape and mini-
mal size to include the given data to capture data structure and
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boundary information more accurately. Compared with the ε-SVR,
ε-TSVR, and TPISVR, the merits of our PINSVR are as follows: (i) the
loss functions used in our PINSVR are different from those in
ε-SVR, ε-TSVR, and TPISVR, and the unique loss setting makes our
PINSVR more adaptive; (ii) only the empirical risk is minimized in
TPISVR, whereas in our PINSVR the structural risk is minimized by
adding a regularization term with the idea of maximizing some
margin. Computational comparisons with ε-SVR, ε-TSVR, and
TPISVR in terms of generalization performance have been made
on several artificial, benchmark and real practical datasets, indi-
cating our PINSVR not only obtains comparable regression perfor-
mance, but also obtains better bound estimations.

The rest of this paper is organized as follows: Section 2 briefly
introduces classical ε-SVR, ε-TSVR, and TPISVR. Section 3 presents
the proposed parametric-insensitive nonparallel support vector
regression (PINSVR) model. Experimental results on several arti-
ficial, benchmark and real practical datasets are given in Section 4.
Some conclusions and remarks are drawn in Section 5.

2. Backgrounds

Consider the following regression problem, suppose that the
training set is denoted by ðA;YÞ ¼ fðx1; y1Þ;…; ðxm; ymÞg � Rn � R,
where A is a m� n matrix and the i-th row AiARn represents
the i-th training sample, i¼ 1;2;…;m. Let Y ¼ ðy1;…; ymÞ denote
the response vector of training samples, where yiAR. Here, some
methods that are closely related to our method are briefly
described, including ε-SVR [1], ε-TSVR [16], and TPISVR [17]. For
simplicity, only the linear regressors are considered.

2.1. ε-Support vector regression (ε-SVR)

The classical ε-SVR searches for an optimal linear regression
function

f ðxÞ ¼wTxþb ð1Þ
where wARn and bAR. To measure the empirical risk, the
ε-insensitive loss function [1,2,7]

Lεðx; y; f Þ ¼ jy� f ðxÞj ε ¼
0 if jy� f ðxÞjrε
jy� f ðxÞj�ε others

(
ð2Þ

is considered that sets a nonnegative ε tube around the data,
within which errors are discarded. By introducing the regulariza-
tion term 1

2 JwJ2 and the slack variables ξ and η, the primal
problem of ε-SVR can be expressed as

min
w;b;ξ;η

1
2
JwJ2þcðeTξþeTηÞ

s:t: Y�ðAwþebÞZ�εe�ξ; ξZ0
ðAwþebÞ�YZ�εe�η; ηZ0 ð3Þ

where c is a positive parameter determining the trade-off between
the empirical risk and the regularization term. Note that a small
JwJ2 corresponds to the linear function (1) that is flat [7]. In the
case of SVC, the structural risk minimization principle is imple-
mented by this regularization term 1

2 JwJ2. In the case of SVR, this
term is also added to minimize the structural risk. An intuitive
two-dimensional geometric interpretation and loss setting for
ε-SVR are shown in Fig. 1.

By introducing the Lagrangian multiplier technique, we obtain
the following dual QPP for (3):

min
α;β

εeT ðαþβÞ�YT ðα�βÞþ1
2
ðα�βÞTATAðα�βÞ

s:t: eT ðα�βÞ ¼ 0; 0rα; βrce ð4Þ
where α and β are the nonnegative Lagrange multipliers. After

optimizing the dual QPP (4), we obtain the weight vector

w¼ AT ðα�βÞ ð5Þ
Once we obtain the w, we can subsequently determine the bias
term b by exploiting the Karush–Kuhn–Tucker (K.K.T) conditions
[1]. Then the estimated regressor is constructed as follows:

f ðxÞ ¼wTxþb ð6Þ
and the down- and up-bound of the regression model are
constructed as follows:

f ðxÞ�ε¼wTxþb�ε and f ðxÞþε¼wTxþbþε ð7Þ

2.2. ε-Twin support vector regression (ε-TSVR)

Different from ε-SVR, ε-TSVR finds a pair of ε-insensitive
nonparallel proximal functions

f 1ðxÞ ¼wT
1xþb1 and f 2ðxÞ ¼wT

2xþb2 ð8Þ
Here, the empirical risks are measured by

Rε1emp½f 1� ¼
Xm
i ¼ 1

maxf0; ðyi� f 1ðxiÞÞ2gþc1
Xm
i ¼ 1

maxf0; �ðyi� f 1ðxiÞþε1Þg

ð9Þ
and

Rε2emp½f 2� ¼
Xm
i ¼ 1

maxf0; ðf 2ðxið�yiÞ2gþc2
Xm
i ¼ 1

maxf0; �ðf 2ðxiÞ�yiþε2Þg

ð10Þ
The functions f 1ðxÞ and f 2ðxÞ are obtained by solving the following
pair of primal QPPs:

min
w1 ;b1 ;ξ

1
2
c3ðwT

1w1þb21Þþ
1
2
ξnTξnþc1eTξ

s:t: Y�ðAw1þeb1Þ ¼ ξn

Y�ðAw1þeb1ÞZ�ε1e�ξ; ξZ0 ð11Þ
and

min
w2 ;b2 ;η

1
2
c4ðwT

2w2þb22Þþ
1
2
ηnTηnþc2eTη

s:t: ðAw2þeb2Þ�Y ¼ ηn

ðAw2þeb2Þ�YZ�ε2e�η; ηZ0 ð12Þ
where c1; c2; c3, and c4 are positive parameters, ε1 and ε2 are
nonnegative. For the optimization problem (11), the second term
in the objective function is the sum of squared distances from the
fitting function f 1ðxÞ ¼wT

1xþb1 to the training samples Y, where
the least squares loss function are used. Therefore, minimizing it
leads to the function f 1ðxÞ fit the regressor. The third term of the
objective function, where the ε-insensitive loss function is used,
minimizes the sum of error variables, thus attempting to over-fit
the training samples. For the optimization problem (12), it has the

Fig. 1. The two-dimensional geometric interpretation and loss setting for ε-SVR.
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