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a b s t r a c t

This work presents the Transition-Aware Human Activity Recognition (TAHAR) system architecture for
the recognition of physical activities using smartphones. It targets real-time classification with a
collection of inertial sensors while addressing issues regarding the occurrence of transitions between
activities and unknown activities to the learning algorithm. We propose two implementations of the
architecture which differ in their prediction technique as they deal with transitions either by directly
learning them or by considering them as unknown activities. This is accomplished by combining the
probabilistic output of consecutive activity predictions of a Support Vector Machine (SVM) with a
heuristic filtering approach. The architecture is validated over three case studies that involve data from
people performing a broad spectrum of activities (up to 33), while carrying smartphones or wearable
sensors. Results show that TAHAR outperforms state-of-the-art baseline works and reveal the main
advantages of the architecture.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Human Activity Recognition (HAR) has nowadays become a
prominent research field due to its substantial contributions in
human-centered areas of study aiming to improve people's
quality of life: Ambient Intelligence, Pervasive Computing and
Assistive Technologies [1–3]. These areas make use of HAR
systems as an instrument that provides information about
people's behavior and actions [4]. This is commonly done by
gathering signals from ambient and wearable sensors and pro-
cessing them through machine learning algorithms for classifica-
tion. There are currently many applications where HAR systems
are used, for instance, the continuous monitoring of patients with
motor problems for health diagnosis and medication tailoring [5],
and the automated surveillance of public places for crime pre-
vention [6].

In the past decade, several HAR systems have been proposed
and surveyed [7–9]. They have encompassed multiple activities
from different application domains, including locomotion, daily
living activities, transportation and sports [10,11] (e.g. walking,
cooking, driving, and running). Regarding their duration and

complexity, activities are categorized in three main groups: short
events, Basic Activities (BAs) and complex activities. The former
group is comprised of brief-duration activities (on the order of
seconds) such as postural Transitions (PTs) (e.g. sit-to-stand), and
body gestures [8]. Basic activities are instead characterized by a
longer duration and can be either dynamic or static (e.g. running
and reading) [12]. The latter group, complex activities, is com-
posed of progressions of the aforesaid simpler activities and
involve aspects such as interaction with objects and other indivi-
duals (e.g. playing sports, social activities) [13]. This research
targets the first two categories.

1.1. Wearable sensors and smartphones

Ambient and wearable sensors have been actively exploited for
HAR [1]. Video cameras, microphones, GPSs, and sensors for
measuring proximity, body motion and vital signs are just a few
examples. Current research on ambient sensors has mainly
focused on video cameras due to the ease of retrieving visual
information from the environment. These have also been com-
bined with other sensors (e.g. with accelerometers and micro-
phones [14]) and recently introduced in wearable technologies for
novel ubiquitous applications [15]. However, people's privacy is a
downside of vision-based technologies that limits their use in
every location. In contrast, recent developments in wearable
sensing technologies such as inertial and vital signs sensors are
offering less invasive alternatives for HAR [16].
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The accelerometer is the most commonly used sensor for
reading body motion signals [8]. This body sensor is generally
used either in multi-sensor arrangements (e.g. triaxial acceler-
ometers and Body Sensor Networks (BSN)) or in combination
with others (e.g. gyroscopes, magnetometers, temperature, and
heart rate sensors) [17]. Bao and Intille [12] proposed one of the
earliest HAR systems for the recognition of 20 activities of daily
living using five wearable biaxial accelerometers and well-known
machine learning classifiers. They achieved reasonably good
classification accuracy reaching up to 84% considering the num-
ber of activities involved. One evident drawback was related to
the number and location of the body sensors used which made
the system highly obtrusive. Gyroscopes have also been employed
for HAR and have demonstrated to improve the recognition
performance when used in combination with accelerometers
[18,19].

Smartphones have become an alternative for wearable sensing
due to the diversity of sensors they support. This aspect, along
with the device processing and wireless communication capabil-
ities, makes them a robust tool for performing activity recognition
[20,21]. Smartphones also have advantages over other ambient
sensing approaches, such as multi-modal sensors in a home
environment or surveillance cameras, because they are ubiquitous
and require none or little static infrastructure to operate [1].
Inertial sensors such as accelerometers and gyroscopes are present
in modern smartphones as they can be mass produced at a low
cost. They are an opportunistic sensing resource for retrieving body
motion data [22,23].

First smartphone-based approaches worked offline. In [24],
the Centinela system was presented. It consisted of a chest unit
composed of several sensors to measure acceleration data and
vital signs (e.g. heart rate, breath amplitude, and respiration rate)
and a smartphone wirelessly connected via Bluetooth. Data was
later processed and classified offline using different machine
learning algorithms. Lee and Cho in [25] developed a HAR system
of 5 transportation activities which combines labeled and unla-
beled data from smartphone inertial sensors with a mixture-of-
expert model for classification. Kwapisz et al. [26] developed an
offline HAR system using a smartphone provided with a built-in
triaxial accelerometer carried on the pocket. Their recognition
model allowed the classification of 6 locomotion activities (2
static postures and 4 dynamic activities). Similarly, we proposed
in [27] a HAR system using a waist-mounted smartphone. It used
a modified SVM with fixed-point arithmetic prediction aiming to
obtain a fast implementation more suitable for battery-
constrained devices.

More recently, online smartphone-based HAR systems have
been proposed. A Nokia smartphone was used in [28] for the
online recognition of 6 activities. In [29], Fuentes et al. presented
an online motion recognition system using a smartphone with
embedded accelerometer which classified 4 BAs through a One-vs-
One (OVO) SVM approach. In the same way, the work presented in
[30] used an Android smartphone with an embedded acceler-
ometer for the online classification of 4 activities. It also allowed
the adaptation of the learned model for new users by gathering
activity samples through a predefined activity protocol.

1.2. Dealing with transitions in HAR systems

In the design of HAR systems there are still some issues that
need to be addressed. In most approaches, transitions between
activities are usually disregarded since their incidence is gener-
ally low and duration is short when compared against other

activities. This is pointed out by Lara et al. in [7], nevertheless, the
validity of this assumption is application-dependent. Even if the
detection of transitions is not required, it is important to notice
them in applications where multiple tasks are performed in a
short period of time. For instance, activity monitoring during
rehabilitation practices, fitness/gymnasium workout activities,
equipment assembly and house cleaning. Fluctuations in the
prediction during transitions affect the performance of the
recognition system if not dealt with properly. A second issue
considers that the activities carried out by people are, in real-life
situations, more than the ones learned by any HAR system [31].
The remaining activities, unknown to the system, are usually
matched as any of the available ones, and this leads to mis-
classifications. Instead, a better approach would allow the system
to tell that it does not predict any of its available classes when its
confidence is below certain level. Dealing with these Unknown
Activities (UAs) allows more functional HAR systems for a variety
of applications.

A number of systems have focused on the detection basic
activities and short events. Khan et al. [32] studied 7 basic
activities and 7 transitions using three Artificial Neural Networks
to separately detect static, dynamic and transitory states. Applica-
tions with a large number of classes such as this can give rise to an
increase in the false negative rate, especially when the main
interest is only on a subset of activities (e.g. basic activities, rather
than transitions). In [33], Zhang et al. proposed an offline HAR
system that combines basic activities with a joint class of various
postural transitions for daily monitoring applications. In [34],
Salarian et al. detected sit-to-stand and stand-to-sit transitions for
better distinguishing between standing and sitting. This was
achieved through a fuzzy logic classifier which required for this
task, past and future transition information.

Only a few works on HAR have targeted how the presence of
transitions between activities impacts system performance. Rednic
et al. in [35] performed posture classification of activities for
ordnance disposal operations using a multi-accelerometer BSN,
while considering the effects of postural transitions in their system
using a weighted voting filter in order to improve the classification
accuracy of postures by 1%. Moreover, erroneous fluctuations of
predicted activities on a classifier can be also dealt in a similar
approach. One example of this is also found in [36] where a
method called statistical-hist was proposed. It processed historical
variations of the classifier BA predictions using a voting strategy
for spurious classification pruning.

In this work, we propose the TAHAR system architecture for the
recognition of human activities using smartphones. It targets the
classification of basic activities in real time and pervasively while
addressing issues regarding transitions and unknown activities. It
offers a flexible and interoperable approach that allows to incor-
porate new elements (e.g. inertial sensors) into the system and
provides an easily exportable output to other ambient intelligent
systems that require activity information. Two implementations of
the architecture are explored. They differ in the way they deal with
transitions that occur in between the activities of interest. In the
first case, transitions are treated as unknown activities. Therefore,
they are not learned by the machine learning algorithm. Instead, in
the second case, transitions are learned by the algorithm as an
extra class [33].

We validate the proposed architecture with three case studies:
for the most part, we exploit the SBHAR dataset that we have
generated from experiments on a group of 30 subjects that
performed six locomotion activities while they were carrying a
smartphone on their waist. This dataset also contains transition
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