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a b s t r a c t

This paper is concerned with the problem of dissipative filtering for discrete-time periodic Markovian
jump systems with bounded nonlinearity. It is assumed that the data measurements from the plant to
the filter are subject to randomly occurred packet dropouts satisfying Bernoulli distribution. The purpose
of this paper is to design a filter such that the filtering error system is stochastically stable and strictly
ðQ;S;RÞ-dissipative. To eliminate the cross coupling between the Lyapunov matrix and system matrices,
some slack matrix variables are introduced. Based on a mode-dependent and basis-dependent Lyapunov
function, a sufficient condition of the desired dissipative filter in terms of linear matrix inequalities
(LMIs) for discrete-time Periodic Markovian Jump Systems with bounded nonlinearity is derived. Finally,
a numerical example is exploited to demonstrate the effectiveness of the proposed filter design method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few decades, Markovian jump systems (MJSs) have
drawn much attention since such types of systems are very common
in physical dynamical systems whose structure is subject to random
abrupt changes, such as aerospace systems, power systems and
networked control systems [1,2]. So far, many researches on stability
analysis and robust controller synthesis for MJSs have been reported,
and many important results have been obtained. For example, the
filtering problems of MJSs have been studied in [3,4]. The control
problems have been investigated in [5,6]. The stability and stabiliza-
tion problems have been reported in [7–11]. The state estimation
problems have been reported in [12], and the synchronization
problems have been studied in [13].

Periodic systems, as a kind of time-varying systems, are very
common in fields like economics, physics and computer science. For
example, the pendulum and the satellite run periodically. In event-
triggered control systems, systems operate periodically due to its
fixed sampling period. Computer services and applications run
according to clock cycles of CPU. Therefore, periodic systems have
received much attention and many problems have been solved

including stability analysis and stabilization [14,15], event-triggered
control [16,17]. However, few results exist in the MJSs framework
for periodic systems.

Due to the temporary failure (data packet dropout) which
results in incomplete signal transmission between the plant and
the filter, conventional filter may lead to poor performance in
practical systems. Nonlinearity is another phenomenon that is
frequently encountered in actual implementation. These two facts
just aforesaid are two sources causing instability and unsatisfac-
tory performance. Therefore, it is necessary and significant to
attach more importance to MJSs with data packet dropout and
nonlinearities.

Besides, since the notion of dissipative systems was introduced
in [18], it has aroused great concern due to its general applications
in electromechanical system, power system, complex chemical
process, etc. In recent years, some research efforts about dissipa-
tive control and dissipative filtering have been obtained (see
[19,20] and references therein).

It should be pointed out that the considered transition prob-
abilities in the Markov process are time-invariant in the majority
of the references in the field of MJSs, i.e., the matrix coefficients
are time-independent. However, the assumption cannot always be
satisfied in real applications [21–23]. Although time-invariant
transition probabilities are expected to simplify the study of MJSs,
the ideal transition probabilities limit the practical applications to
some extent inevitably. Therefore it is important to attach great
importance to the study of nonhomogeneous MJSs. However, up to
now, MJSs with time-varying transition probabilities have not yet
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been fully investigated, and this constitutes the primary motiva-
tion of our present research.

In this paper, the problem of dissipative filtering for discrete-
time periodic MJSs with nonhomogeneous finite state Markov
chain and nonlinearity has been studied. Besides, the measure-
ments transmission from the plant to the filter is subject to
randomly occurred packet dropouts satisfying Bernoulli distribu-
tion. Resorting to a basic-dependent Lyapunov function, a suffi-
cient condition in term of LMIs has been proposed for ensuring the
considered system stochastically stable and strictly ðQ;S;RÞ-dis-
sipative. By introducing some slack matrix variables to eliminate
the coupling between the system matrices and Lyapunov matrix
among different modes, the filter design is obtained by solving a
set of LMIs. An numerical example is given to show the effective-
ness of the proposed approach.

The rest of this paper is organized as follows. Section 2 presents
the definitions and the preliminary results. Stochastically stability
and strictly ðQ;S;RÞ-dissipation of the filter error system are given
in Section 3. The filter design problem is solved in Section 4. A
numerical example is given in Section 5, and we conclude the
paper in Section 6.

Notation: The notations used throughout this paper are fairly
standard. For notation ðΩ;F ;PÞ, Omega is the sample space, F is
the σ-algebra of subsets of the sample space and P is the
probability measure on F . Rn denotes the n-dimensional Eucli-
dean space. The notation P40ðZ0Þ means that P is real sym-
metric and positive definite (positive semidefinite). I and
0 represent the identity matrix and the zero matrix, respectively.
The superscript “ T” represents the transpose. l2½0;1Þ is the space
of square-integrable vector functions over ½0;1Þ. J � J denotes the
Euclidean norm of a vector. For an arbitrary matrix B and two
symmetric matrices A and C,

A B

n C

� �

denotes a symmetric matrix, where “n” denotes the term that is
induced by symmetry, and diagf⋯g stands for a block-diagonal
matrix. Besides, Efxg and Efxjyg will, respectively, mean expecta-
tion of x and expectation of x condition on y. Matrices, if their
dimensions are not explicitly stated, are assumed to have compa-
tible dimensions for algebraic operations.

2. Definitions and preliminary results

Fix an underlying probability space ðΩ;F ;PÞ and consider the
following discrete-time MJSs:

xðkþ1Þ ¼ Aðk;θkÞxðkÞþBðk;θkÞωðkÞ
þEðk;θkÞf ðxðkÞÞ

yðkÞ ¼ eðkÞCðk;θkÞxðkÞþDðk;θkÞωðkÞ
zðkÞ ¼Hðk;θkÞxðkÞþLðk;θkÞωðkÞ

8>>>><
>>>>:

ð1Þ

where xðkÞ ¼ ½xT1ðkÞ; xT2ðkÞ;…; xTnðkÞ�T ARn is the state vector,
ωðkÞARm is the external disturbance signal which belongs to

l2½0;1Þ, f ðxðkÞÞ ¼ ½f T1ðxðkÞÞ; f T2ðxðkÞÞ;…; f TnðxðkÞÞ�T ARn is the non-
linear input, yðkÞ ¼ ½yT1ðkÞ; yT2ðkÞ;…; yTpðkÞ�T ARp is the measured

output, zðkÞ ¼ ½zT1ðkÞ; zT2ðkÞ;…; zTq ðkÞ�T ARq is the signal to be
estimated.

The stochastic variable eðkÞ is Bernoulli distributed white
sequence taking values on either 0 or 1 with

ProbfeðkÞ ¼ 1g ¼ EfeðkÞg ¼ e; ProbfeðkÞ ¼ 0g ¼ 1�e

where Probf�g stands for the probability.
The process fθk; kZ0g is defined on a finite statespace

Ξ ¼ f1;…;σg. It is assumed that the mode transition probabilities

are given as

πijðkÞ ¼ Probfθkþ1 ¼ jjθk ¼ ig; i; jAΞ ð2Þ
where Πk ¼ ½πijðkÞ�, 0rπijðkÞr1 and

Pσ
j ¼ 1 πijðkÞ ¼ 1, 8kZ0. πijðkÞ

means the transition probabilities from ith mode at time k to jth
mode at time kþ1. For convenience of later analysis, we denote
the matrices associated with the ith mode by UiðkÞ ¼Uðk;θk ¼ iÞ,
UFiðkÞ ¼ UF ðk;θk ¼ iÞ. The system matrices of the ith mode are
denoted by ð½AiðkÞ�kZ0, ½BiðkÞ�kZ0, ½CiðkÞ�kZ0, ½DiðkÞ�kZ0, ½EiðkÞ�kZ0;

½HiðkÞ�kZ0, ½LiðkÞ�kZ0Þ, iAΞ, which are p-periodic matrix sequences.
Obviously these matrices are real known with appropriate dimen-
sions. A set of matrices ½UiðkÞ�kZ0 is said to be p-periodic if
UiðkÞ ¼ UiðkþpÞ; iAΞ; kZ0 [24]. Based on this, the system is
turned into

xðkþ1Þ ¼ AiðkÞxðkÞþBiðkÞωðkÞ
þEiðkÞf ðxðkÞÞ

yðkÞ ¼ eðkÞCiðkÞxðkÞþDiðkÞωðkÞ
zðkÞ ¼HiðkÞxðkÞþLiðkÞωðkÞ:

8>>>><
>>>>:

ð3Þ

Remark 1. In this paper, we know that Markov chain in the
system is nonhomogeneous because transition probabilities are
time-dependent. However, when Πk ¼Π for all kZ0, the Markov
chain is known as a homogeneous Markov chain. In this paper,
transition probability matrices ½ΠkðkÞ�kZ0 are also p-periodic.

Here, we are interested in designing a full-order p-periodic
Markovian jump linear filter of the form

xF ðkþ1Þ ¼ AFiðkÞxF ðkÞþBFiðkÞyðkÞ
zF ðkÞ ¼HFiðkÞxF ðkÞþLFiðkÞyðkÞ
xF ð0Þ ¼ 0

8><
>: ð4Þ

where AFi(k), BFi(k), HFi(k), LFi(k), 8 iAΞ are filter gains to be
determined. The filter with the above structure is assumed to
jump synchronously with the modes in system (3), which is
hereby mode-dependent.

Applying this filter to the system (3), we obtain the following
estimation error system:

xðkþ1Þ ¼ Ai1ðkÞxðkÞþ ~eðkÞAi2ðkÞxðkÞ
þBiðkÞωðkÞþEiðkÞf ðxðkÞÞ

zðkÞ ¼ Ci1ðkÞxðkÞþ ~eðkÞCi2ðkÞxðkÞ
þDiðkÞωðkÞ

8>>>><
>>>>:

ð5Þ

where xðkÞ ¼ xT ðkÞ xTF ðkÞ
� �T

AR2n; f ðxðkÞÞ ¼ f T ðxðkÞÞ 0
h iT

AR2n; zðkÞ
¼ zðkÞ�zF ðkÞ; ~eðkÞ ¼ eðkÞ�e and

Ai1ðkÞ ¼
AiðkÞ 0

eBFiðkÞCiðkÞ AFiðkÞ

" #

Ai2ðkÞ ¼
0 0

BFiðkÞCiðkÞ 0

" #

BiðkÞ ¼
BiðkÞ

BFiðkÞDiðkÞ

" #

Ci1ðkÞ ¼ HiðkÞ�eLFiðkÞCiðkÞ�HFiðkÞ
� �

;

Ci2ðkÞ ¼ �LFiðkÞCiðkÞ0
� �

DiðkÞ ¼ LiðkÞ�LFiðkÞDiðkÞ
� �

EiðkÞ ¼
EiðkÞ 0
0 0

� �
: ð6Þ

Note that (5) is a p-periodic discrete-time MJLS. In other words,
Ai1ðkÞ, Ai2ðkÞ, BiðkÞ, Ci1ðkÞ, Ci2ðkÞ, DiðkÞ, EiðkÞ are p-periodic matrix
sequences. It is clear that Ef ~eðkÞg ¼ 0 and Ef ~eðkÞ ~eðkÞg ¼ eð1�eÞ.

Assumption 1 (Liu et al. [25]). Each function f iðxðkÞÞ in (1) is
continuous and bounded, and there exist constants δi and ρi such
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