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a b s t r a c t

Economic Load Dispatch (ELD) is one of the essential components in power system control and operation.
Although conventional ELD formulation can be solved using mathematical programming techniques,
modern power system introduces new models of the power units which are non-convex, non-differenti-
able, and sometimes non-continuous. In order to solve such non-convex ELD problems, in this paper we
propose a new approach based on the Social Spider Algorithm (SSA). The classical SSA is modified and
enhanced to adapt to the unique characteristics of ELD problems, e.g., valve-point effects, multi-fuel
operations, prohibited operating zones, and line losses. To demonstrate the superiority of our proposed
approach, five widely adopted test systems are employed and the simulation results are compared with
the state-of-the-art algorithms. In addition, the parameter sensitivity is illustrated by a series of
simulations. The simulation results show that SSA can solve ELD problems effectively and efficiently.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Economic Load Dispatch (ELD) is a fundamental problem in
power system control and operation. The goal of ELD is to find a
best feasible power generation schedule with a minimal fuel cost,
while satisfying the generation constraints of the power units [1].
In the canonical formulation of ELD, the fuel costs of power units
are represented by quadratic functions, which are convex and can
be easily solved using mathematical programming methods. Many
classical methods have been employed to solve ELD in the past
decades, e.g., the gradient method [2], the lambda iteration
method [3], and quadratic programming [4]. These methods have
also been employed to solve other optimization problems in power
system like the Unit Commitment problem [5] and the Optimal
Power Flow problem [6].

Although the convex, differentiable, and monotonically increasing
canonical formulation of ELD is simple to solve, it is unrealistic
because valve-point effects (VPE), multi-fuel options (MFO), and
prohibited operating zones (POZ) are not considered. However, all
these factors shall be accounted for in the real-world industrial
production process. Incorporating these factors, the modern ELD is
represented by a non-convex, non-continuous, and non-differentiable
optimization problem with many equality and inequality constraints,
making it very challenging to find the global optimum solution. For

the sake of simplicity, ELD is used to refer to the modern formulation
of the problem hereafter.

Despite the complexity of the problem, a number of techniques
have been devised to solve ELD in the past decade, e.g., Tabu
search [7], Taguchi method [8], and variants of particle swarm
optimization [9,10]. Evolutionary algorithms (EAs) also play an
important role in solving ELD problems. Currently most state-of-
the-art solvers for ELD are EAs and their variants according to the
analysis in [11].

Social Spider Algorithm (SSA) is a recently proposed evolu-
tionary algorithm to solve global numerical optimization problems
[12]. By mimicking the foraging behavior of the social spiders, SSA
explores and exploits the solution space in an iterative manner. In
the formulation of SSA, searching information is propagated
among the individuals, i.e., spiders, through the means of vibra-
tions, which are lossy. In addition to this lossy information feature,
SSA also incorporates a new social animal foraging model, namely,
the information sharing model [13]. In this model, individuals in a
population perform searching and joining behaviors simulta-
neously, which could potentially result in improved searching
efficiency [12,14]. The reasons leading to the outstanding perfor-
mance of SSA have been investigated in [12], and the improve-
ments are mainly credited to the unique design of the information
loss scheme and the searching pattern. Besides its superiority in
solving optimization benchmark problems [12], SSA has also
demonstrated its potential to be applied to address real world
complex optimization problems [15]. This makes it a good candi-
date to generate outstanding power schedules for ELD.
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In this paper, we propose a variant of SSA to solve ELD problem,
accounting for VPE, MFO, POZ, and power line loss. The advantage
of our proposed algorithm is that it can generate more cost-
efficient power schedules when compared with other algorithms.
The rest of the paper is organized as follows. We first introduce the
related work in Section 2. Section 3 presents the formulation of
ELD with VPE, MFO, POZ, and power line loss. Our proposed
algorithm is elaborated in Section 4, and simulation problems,
results, and comparisons are shown in Section 5. Finally we
conclude this paper in Section 6.

2. Related work

Over the past decades, many methods have been developed to
solve ELD. Lin and Viviani proposed a hierarchical numerical
method to solve the economic dispatch problem with piecewise
quadratic cost functions [16]. In this work the authors considered
multiple intersecting cost functions for each generator, which is an
analogy of MFO. A similar formulation of the problem is addressed
by Park et al. [17] with hopfield neural networks. This work is
among the first attempts of adopting computational intelligence
methodologies in solving ELD. Lee et al. later proposed an adaptive
hopfield neural network to solve the same problem [18]. Their
algorithm introduced a slope adjustment and bias adjustment
method to speed up the convergence of the hopfield neural
network system with adaptive learning rates. Lee and Breipohl
proposed a decomposition technique to solve ELD with POZ [19].
Their algorithm decomposes the nonconvex decision space into
subsets which can be solved via the conventional Lagrangian
relaxation approach. Binetti proposed a distributed algorithm
based on the auction techniques and consensus protocols to solve
ELD [20]. In their work, each power unit locally evaluates its
possible fuel costs as bids. The bids are later employed in the
auction mechanism to come up with a consensus. A very recent
work by Zhan et al. proposed a dimensional steepest decline
method [11]. This method utilizes the local minimum analysis of
the ELD problem to reduce the solution space to singular points.

Besides the above non-EA approaches, many EA methods have
also been developed to solve various formulations of ELD. Orero
and Irving proposed a simple Genetic Algorithm (GA) to solve ELD
with POZ [21]. Besides the standard GA, this work also devised a
deterministic crowding GA model to solve the problem. Chiang
developed an improved GA with the multiplier updating scheme
for ELD with VPE and MFO [22]. In this work, the proposed GA is
incorporated with an improved evolutionary direction operator. In
addition, the tailor-made migration operator efficiently searches
the solution space. He et al. proposed a hybrid GA approach to
solve ELD with VPE [23]. The algorithm proposed is a hybrid GA
with differential evolution (DE) and sequential quadratic program-
ming (SQP). Sinha et al. developed an Evolutionary Programming
(EP) method to solve ELP with VPE [24]. Pereira-Neto et al.
proposed an Evolutionary Strategy (ES) method to solve ELP with
VPE and POZ [25]. DE has also been adapted to solve ELD [26,27].

Swarm Intelligence (SI), a branch of EA, has also attracted researchers’
attention. Particle Swarm Optimization (PSO) has made a significant
contribution in solving ELD problems. Selvakumar and Thanushkodi
proposed a “new PSO” based on the classical PSO for ELD with VPE,
MFO, and POZ [28]. They manipulated the cognitive searching behavior
in PSO to facilitate the solution space exploration. They also proposed an
anti-predatory PSO in [29]. In this algorithm, a new anti-predator
scheme is modeled and introduced in the classical PSO. Chaturvedi
et al. proposed a hierarchical PSO for ELD with VPE and POZ [30]. In this
work, a time-varying acceleration coefficient is introduced to act as the
inertia factor of PSO. Meng et al. proposed a Quantum PSO for ELD with
VPE [31]. Their algorithm demonstrated strong searching ability and fast

convergence speed, which are contributed by the introduction of
quantum computing theory, self-adaptive probability selection, and
chaotic sequence mutation. Safari and Shayeghi developed an Iteration
PSO for ELDwith VPE and POZ [32]. Besides the conventional global best
(gBest) and personal best (pBest) positions considered in canonical PSO,
the proposed algorithm also considers an iteration best (iBest) position in
the searching process. Nature-inspired EAs also yield satisfactory results
in solving ELD variants. Some outstanding ones are Bee Colony
Optimization Algorithm [33], Biogeography-Based Optimization [34],
Ant Swarm Optimization [35], Harmony Search Algorithm [36], and
Chemical Reaction Optimization [37].

3. Economic load dispatch problem

The objective of the ELD problem is to find an optimal power
generation schedule with minimal fuel cost while satisfying
different power system operating constraints, including power
unit and load balancing constraints. In this paper we adopt the
formulation described in [11] and [37]. The problem is formulated
on one-hour time spans.

3.1. Objective function

The objective function of ELD is defined as follows:

min
P

Xn
i ¼ 1

Fci ðPiÞ; ð1Þ

where n is the total number of power units, Fci ðPiÞ is the fuel cost
function for the ith power unit, and Pi is the power generation for
the ith power unit according to the power generation schedule.

3.1.1. Valve-point effect
Conventionally the fuel cost of power units are formulated by a

quadratic function with the following form:

Fci ¼ aiþbiPiþciP
2
i ; ð2Þ

where a, b, and c are constant coefficients determined by the
physical characteristics of the power units. However, the fuel cost
function exhibits a larger variation in practice due to VPE, which
generates ripple like effect during the valve-opening process of
multi-valve units. A more precise formulation with both a quad-
ratic component and a rectified sinusoidal component is adopted.
In (1), the fuel cost is defined by

Fci ¼ aiþbiPiþciP
2
i þjei sin ðf iðPmin

i Þ�PiÞj ; ð3Þ
where e and f are new coefficients describing VPE, and Pmin

i is the
minimum power generation for the ith power unit in the system.

3.1.2. Multi-fuel options
Modern power units can be operated with multiple fuels [11],

and each fuel has a different fuel cost function. The unit will
always utilize the fuel with a minimum fuel cost given a specified
power generation requirement. Thus the fuel cost defined in (3) is
further modified to reflect the effects of multiple fuel options. A
piecewise quadratic function is adopted to calculate the fuel cost
of such power units, defined as follows:

Fci ¼minðai;1þbi;1Piþci;1P
2
i þjei;1 sin ðf i;1ðPmin

i Þ�PiÞj ;
ai;2þbi;2Piþci;2P

2
i þj ei;2 sin ðf i;2ðPmin

i Þ�PiÞj ;
⋯;

ai;hþbi;hPiþci;hP
2
i þjei;h sin ðf i;hðPmin

i Þ�PiÞj Þ; ð4Þ
where ai;k, bi;k, ci;k, ei;k, and f i;k are the fuel cost coefficients of the
kth fuel option of the ith power unit, and h is the total number of
fuel options. Note that our formulation of MFO is different from
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