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a b s t r a c t

There are many well-known particle swarm optimization (PSO) algorithms which consider ring/star/von
Neumann et al. topological neighborhood and scarcely aim at Euclidean spatial neighborhood structure.
k-Nearest Neighbors (k-NN) is a kind of clustering method to find the necessary representatives among a
group of objects efficiently. Pattern search (PS) is a successful derivative-free coordinate search method
for global optimization. All these observations inspire the innovative ideas to propose an enhanced
particle swarm optimization algorithm (pkPSO). Particles efficiently explore for the promising areas and
solutions with clustering on the Euclidean spatial neighborhood structure. Particle swarm continuously
exploits at the just found promising areas with PS strategy at the latter stage of optimization. The
cooperative effect of k-NN and PS strategies is firstly verified. Based on classical, rotated and shifted
benchmarks, extensive experimental comparisons indicate that pkPSO has a competitive performance
when comparing with the well-known PSO variants and other evolutionary algorithms.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

For several decades, population-based optimization algorithms
have been playing increasingly important roles in many fields [38].
They have always been the active research areas for optimization
problems solving since their emergence. Without loss of general-
ity, in this paper, we consider the following numerical optimiza-
tion problem:

Minimize : y¼ f ð x!Þ; x!AΘ ð1Þ

where ΘARD is a compact set, x!¼ ðx1; x2;…; xDÞT is decision
variable, and D is the dimension of x!, i.e., the number of decision
variables. Generally, for each variable, it satisfies a boundary
constraint, such that

LjrxjrUj; j¼ 1;2;…;D ð2Þ

Particle swarm optimization (PSO) is a swarm intelligence
technique developed by Kennedy and Eberhart [22,11], which is
a stochastic and population-based adaptive optimization method
inspired by social behavior of bird flocks. As one of the versatile
and efficient swarm intelligence techniques, PSO has attracted
increasing attentions and been widely applied in various areas

[38]. The outstanding feature of PSO is its new solution generation
mechanism which distinguishes it from other biological-inspired
optimization techniques. PSO guides its search direction by this
generation strategy in which each particle updates its velocity
through a linear combination among its present status, historical
best experience and the swarm best experience. Such a velocity
updating strategy is easy to achieve, but experimentally inefficient
when searching in a complex space. The reason may be that the
swarm will converge quickly by tracking only its historical best
experience and global best experience. It is easy to fall into local
optima due to being lack of an effective escaping mechanism at
the latter stage of evolution. Therefore, how to choose the typical
and promising representative solutions among the current popu-
lation and powerful local search techniques to be executed on
these promising solutions is essential to the performance of PSO.
This is the initial motivation of this research. k-NN is adopted to
find the promising solutions and pattern search is adopted for
exploitation in this paper.

Recently, many improved learning strategies and encouraging
PSO variants have been proposed. Liang et al. [25] proposed a
novel comprehensive learning strategy for PSO where other
particles' previous best positions are exemplars to be learned from
by any particle. Each dimension of a particle can potentially learn
from a different exemplar. The new strategy makes the particles
have more exemplars to learn from and a larger potential space to
fly. Wang et al. [39] employed a generalized opposition-based
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learning (GOBL) and Cauchy mutation to provide a faster conver-
gence and help particles escape from local optima. Cho et al. [4]
presented a species-based particle swarm optimization to gener-
ate new particles for multiple optimal solutions using determinis-
tic sampling. Nickabadi et al. [28] proposed a new adaptive inertia
weight by using the success rate of the swarm as its feedback
parameter to ascertain the particles' situation in the search space.
Zhan et al. [41] put forward an adaptive particle swarm optimiza-
tion (APSO), in which two main steps are conducted to adaptively
adjust the parameters when the swarm lies in a different evolu-
tionary state (exploration, exploitation, convergence and jumping
out) in each generation. Then an elitist learning strategy is
performed when the evolutionary state is classified as conver-
gence state. Zhan et al. [42] also applied an orthogonal learning
strategy to discover more useful information that lies in each
particle's historical best experience and its neighborhood's best
experience. Zhao et al. [44] proposed a novel multi-swarm
cooperative multistage perturbation guiding particle swarm opti-
mizer. Multi-swarm cooperation aims to improve the evolving
efficiency via information communicating and sharing among
different sub-swarms. Multistage perturbation strategy aims to
slow down the learning speed and intensity.

As many excellent contributions indicate, PSO has already been
shown to be a promising global and combinatorial optimization
algorithm. However, like most population-based algorithms, PSO
takes a long time because of its stochastic nature and it is always a
challenge to define even more competitive optimization algorithms.
To improve the performance of PSO, a new PSO variant (pkPSO) is
proposed for global optimization. Particle swarm efficiently finds
the promising areas and the representatives of solutions at the just
found areas with PSO-based framework and k nearest neighbor
clustering algorithm. Then each particle tracks its best historical
experience from the Euclidean spacial neighbors. It hopes to
produce an even better solution with pattern search strategy on
the basis of the found-so-far best particles.

The rest of this paper is organized as follows. The framework of
canonical PSO and several other state-of-the-art evolutionary algo-
rithms (EAs) are described in Section 2. Then, clustering technique of
k-nearest neighbor algorithm and pattern search strategy (PS) are
introduced in Section 3. Section 4 introduces the research motivation
and algorithmic components of the Euclidean spacial neighborhood-
based PSO with clustering and pattern search. In Section 5, compre-
hensive experimental comparisons are conducted to analyze the key
parameters and to verify the efficacy and efficiency of pkPSO. Finally,
this paper is concluded at Section 6.

2. Population-based evolutionary algorithms

Nature inspired optimization algorithms, such as genetic algo-
rithm (GA) [16], particle swarm optimization algorithm (PSO) [29],
differential evolution (DE) [35], ant colony optimization algorithm
(ACO) [9] and artificial bee colony algorithm (ABC) [21], have
attracted wide attention to researchers from both model and
metaphor levels. It inspires us greatly to tackle complex optimization
problems. Careful observations on the underlying relations between
optimization and biological evolution lead to the prosperous devel-
opment of evolutionary computation and swarm intelligence.

2.1. Canonical particle swarm optimization

A canonical PSO [29] is an optimization technique based on the
cooperation and competition among individuals to search the
optimal solution in a D-dimensional hyperspace. There is a swarm
of particles and each individual has a fitness value which is
decided by the objective function. During the particles' evolution,

each particle has a velocity vector v!i ¼ ðvi1; vi2;…; viDÞ and a
position vector x!i ¼ ðxi1; xi2;…; xiDÞ and then flies to the potential
optimal position under the guidance of the heuristic information,
where i is a positive integer indexing the particle in the swarm.

Particle tracks two extremes to update itself. One is its personal
historical best position vector p!i and the other is the best position
found by the entire swarm, which is denoted as p!g . The vector v!i

and the position x!i are randomly initialized and updated by the
following formulae through the guidance of p!i and p!g:

vi;dðtþ1Þ ¼ωvi;dðtÞþc1r1ðpi;dðtÞ�xi;dðtÞÞþc2r2ðpg;dðtÞ�xi;dðtÞÞ ð3Þ

xi;dðtþ1Þ ¼ xi;dðtÞþvi;dðtþ1Þ ð4Þ
where ω is the inertia weight, coefficients c1 and c2 are the
cognitive and social weights, and r1; r2 are two uniform random
numbers within the interval of [0, 1]. The inertia weight ω was
introduced by Shi and Eberhart [33,34]. A usually used linearly
decreasing strategy of ω is

ω¼ωmax�ðωmax�ωminÞ �
t
T

ð5Þ

where t and T are the current and the maximal iteration numbers
or the numbers of function evaluations. ωmax and ωmin are the
predefined maximal and minimal inertia constants respectively.

2.2. CLPSO

Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions (CLPSO), introduced by
Liang et al. [25], is a new variant of PSO aiming at avoiding
premature convergence when solving multimodal problems based
on a new velocity update equation as follows:

vi;dðtþ1Þ ¼ωvi;dðtÞþc1r1ðpf iðdÞðtÞ�xi;dðtÞÞ ð6Þ

where f
!

i ¼ ½f ið1Þ; f ið2Þ;…; f iðDÞ� defines which particle's pbest that
particle i should follow. pf iðdÞ can be the corresponding dimension
of any particle's pbest including its own pbest. The decision
depends on probability Pc which is referred to as the learning
probability. It takes different values for different particles.

In CLPSO, each dimension of a particle can learn from different
pbest for different dimensions, instead of learning from its own two
exemplars (pbest and gbest) at the same time. This new learning
strategy effectively enhances population diversity and potentially
enables swarm diverse to avoid premature convergence.

2.3. CMA-ES

Hansen et al. [15] proposed a new evolutionary algorithm,
CMA-ES, which is a second order method. CMA-ES is similar to
quasi-Newton method, but not inspired by it. Within an iterative
procedure, CMA-ES will estimate the inverse of Hessian matrix
using the covariance adaptation.

In CMA-ES, any new candidate solutions are sampled according
to a multivariate normal distribution Nðm!k;σ2

kCkÞ at iteration k.
Here, m!kARD is the current best solution, σk40 is the step size,
and Ck is a symmetric and positive definite D� D covariance
matrix with C0 ¼ I. Then, the dependence between any two
variables in this distribution is represented by a covariance matrix.
Therefore, to update the covariance matrix of this distribution is to
promote the information exchange of solutions. So this method is
denoted as covariance matrix adaptation (CMA).

Similar to the approximation of the inverse Hessian matrix in
the quasi-Newton method, adaptation of the covariance matrix
means to learn a second order model of the objective function. But,
unlike traditional optimization methods, CMA-ES is a derivative-
free approach and fewer assumptions on the objective function are
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