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a b s t r a c t

This paper deals with the problem of passivity analysis for neural network with both time-varying
delays and norm-bounded parameter uncertainties. A remarkable approach is proposed for construct-
ing a novel Lyapunov–Krasovskii function involving triple integral terms. It does not requiring all the
symmetric matrices to be positive definite. Due to the triple-integral terms and relaxation on the
positive-definiteness of every Lyapunov-matrix, the conservatism of the results can be successfully
reduced. Finally, numerical examples are given to demonstrate the effectiveness of proposed
techniques.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, neural networks (NNS) have been paid
considerable attention due to its extensive applications in lots of
different areas, such as pattern recognition, signal processing,
model identification and optimization problem. As is known that
time delay frequently occurs because of the finite switching speed
of amplifiers. However, time delay may cause the oscillation and
the instability of the system. Stability analysis is thus an important
issue in the field of delayed neural networks [1–18]. Recently,
many research results have been proposed to deal with the
stability problems and the performance of the neural networks
with time delay have been improved [19–28].

In real word application, parameter variations, modeling errors
and process uncertainties always exist. Particularly, in the case of
neural network systems the weight coefficients of neurons often
appear uncertainties which are unavoidable and usually time
varying. Thus, the stability of uncertain systems has been wide
studied. In [34], author researched uncertain neural networks with
mixed delays by using an LMI approach and further research
results have been developed in [14].

Passivity, as a powerful tool, relates the inputs and outputs to
the storage function. Passive properties of systems can keep the
systems internally stable. The concept of passivity has been
researched in the analysis of stability of dynamical system, non-
linear control and fuzzy control. In a number of practical applica-
tions, the problem of passivity analysis for neural network with
time-varying delays has been extensively investigated in various
fields of science and engineering. In [35], the sufficient conditions
for passivity have been established for neural networks. Consider-
ing neural networks with time delays, passivity conditions have
been presented in [23,24,36–39]. In [23,38], the derived passivity
condition is delay-dependent, which are less conservative than the
delay-independent results in [35]. In order to further cope with
the passivity analysis, passivity condition of neural networks with
discrete time has been obtained in [40,41]. In [42–44], passivity
of neural networks with discrete and distributed delays has been
analyzed. Stability and passivity analyses for different neural
networks with Markovian jump parameters and time-varying
delays have been investigated in [45,46]. Comparing with [33],
an augmented Lyapunov–Krasovskii function with tripe-integral
terms is introduced in this research work to improve passivity
conditions and relaxed conditions on the activation fun-
ction. In addition, to bound the integral terms in derivative of
Lyapunov–Krasovskii function, Jensen's inequality-based integral
inequalities and the free matrix approach are commonly used in
[29–33] for stability analysis. In this paper, in order to further
enhance the researched results, a new integral inequality based on

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.07.033
0925-2312/& 2015 Elsevier B.V. All rights reserved.

☆This work was supported by National Natural science Foundation of China
(No. 61273015).

n Corresponding author.
E-mail address: liyuanyuanfy@163.com (Y. Li).

Neurocomputing 171 (2016) 1003–1012

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.07.033
http://dx.doi.org/10.1016/j.neucom.2015.07.033
http://dx.doi.org/10.1016/j.neucom.2015.07.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.07.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.07.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.07.033&domain=pdf
mailto:liyuanyuanfy@163.com
http://dx.doi.org/10.1016/j.neucom.2015.07.033


reciprocally convex inequality is applied to present less conserva-
tive than other integral inequalities derived in terms of Jensen's
inequality.

Referring to the mentioned discussion above, the research
work is motivated to deal with the problem of passivity analysis
for neural network with both time-varying delay and norm-
bounded parameter uncertainties, the relaxed passivity criteria
in terms of LMIs are presented. The advantage of this paper lies
in that the symmetric matrices involved in the Lyapunov–
Krasovskii function are not required to be all positive definite.
A new activation functional condition l�i rgiðaÞ�giðbÞ

a�b r lþi , it is
assumed that l�i and lþi are constants which are not limited to
be positive or negative. Comparing with [33], a novel Lyapunov–
Krasovskii function with tripe-integral terms is constructed. In
this paper, in addition, a new integral inequality is applied in
terms of reciprocally convex inequality for the purpose of
conservatism reduction. Less conservative stability criteria are
evaluated by using linear matrix inequalities. Finally, three
numerical examples are illustrated the effectiveness of the
proposed methods.

Notation: Throughout this paper, Rn denotes the n-dimen-
sional Euclidean space and Rn�n is the set of all n� n real
matrices. For symmetric matrices X, the notation X40ðXZ0Þ
means that is a real symmetric positive definite matrix (positive
semi-definite). For symmetric matrices X and Y, the notation
X4YðXZYÞ means that the matrix X�Y is positive definite
(nonnegative), sym(A) denotes AþAT , n denotes the elements
below the main diagonal of a symmetric block matrix, I de-
notes the identity matrix with appropriate dimensions.
colðx1; x2;…; xnÞ means ½xT1 ; xT2 ;…; xTn�T .

2. Preliminaries

Consider the following neural networks with time-varying
delay:

_xðtÞ ¼ �ðAþΔAðtÞÞxðtÞþðWþΔWðtÞÞgðxðtÞÞþðW1

þΔW1ðtÞÞgðxðt�τðtÞÞÞþuðtÞ; ð1Þ

yðtÞ ¼ gðxðtÞÞ; tZ0 ð2Þ

xðtÞ ¼ϕðtÞ; tA ½�τ2;0� ð3Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ;…; xnðtÞ�T ARn is the neuron state vector,
A¼ diagða1; a2;…; anÞ, and ai40 ði¼ 1;2;…;nÞ. W, W1 are inter-
connection weight matrices. τðtÞ are the time-varying delays,
ϕðtÞARn is a vector-valued initial condition function, respectively.
ΔAðtÞ, ΔWðtÞ, ΔW1ðtÞ represent the time-varying parametric uncer-
tainties. gðxð�ÞÞ ¼ ½g1ðx1ð�ÞÞ; g2ðx2ð�ÞÞ;…; gnðxnð�ÞÞ�T ARn denotes the
neuron activation function, yðtÞ ¼ gðxðtÞÞ are the output of neural
networks. uðtÞ ¼ ½u1ðtÞ;u2ðtÞ;…;unðtÞ�T ARn stands for the external
inputs. Throughout this paper, we shall use the following
assumption.

Assumption 2.1. The time delay τðtÞ is a time-varying function in
ð1Þ that satisfies τ1rτðtÞrτ2, _τðtÞrτD, where τ1Z0, τ240,
τDZ0 are constants and let τ12 ¼ τ1�τ2.

Assumption 2.2. Each activation function gið�Þ in system (1)
is continuous and bounded, which satisfies the following

inequalities:

l�i rgiðaÞ�giðbÞ
a�b

r lþi and gið0Þ ¼ 0; ð4Þ

where a, bAR, l�i and lþi are known constants.

Remark 2.1. l�i and lþi ði¼ 1;2;…;nÞ are constants, which can be
positive, negative and zero in Assumption 2.2. Consequently, this
type of activation function is clearly more general than both the
usual sigmoid activation function and the piecewise liner function
giðuÞ ¼ 1

2ðjuiþ1 j � jui j Þ, which is useful to get less conservative
result.

Assumption 2.3. The real-valued matrices ΔAðtÞ, ΔWðtÞ, ΔW1ðtÞ
represent the time-varying parameter uncertainties, and are
assumed to be of the form

½ΔAðtÞΔWðtÞΔW1ðtÞ� ¼HFðtÞ½Ea Ew Ew1 �; ð5Þ
where H, Ea, Ew, Ew1 are known constant matrices of appropriate
dimensions and F(t) are unknown time-varying matrices with
Lebesgue measurable elements bounded by FT ðtÞFðtÞr I. In which I
is the identity matrix of appropriate dimensions.

Remark 2.2. The uncertainties ΔAðtÞ, ΔWðtÞ, and ΔW1ðtÞ satisfy
Eq. (5) and reflect the impreciseness of dynamical systems. This
could lead to the complexity of systems and increase the difficulty
of solving the problem.

We now introduce the following passivity definition.

Definition 2.1 (Park et al. [20] and Fridman and Shaked [38]). The
system in (1)–(3) is said to be passive if there exists a scalar γ40
such that the inequality

2
Z tf

0
yT ðαÞuðαÞ dαZγ

Z tf

0
uT ðαÞuðαÞ dα; ð6Þ

holds for all tf Z0 and under the zero initial condition

The neural networks in (1)–(3) are asymptotically stable and
the input and the output of system (1)–(3) satisfy the passivity
inequality in (6).

The physical meaning of passive systems is that energy of a
nonlinear system can only be increased through the supplement
from external sources. In other word, a passive system cannot
store more energy than it is supplied.

3. New passivity criteria

Lemma 3.1 (Jensens inequality, Li and Liao [39]). For any constant
matrix V, WARn�n with M40, scalars b4a, vector function
V:½a; b�-Rm such that integrations in the following are well-
defined, then

ðb�aÞ
Z b

a
VT ðsÞMVðsÞ dsZ

Z b

a
V ðsÞ ds

 !T

M
Z b

a
VðsÞ ds; ð7Þ

τ2

2

Z 0

�τ

Z t

tþθ
WT ðsÞMWðsÞ ds dθZ

Z 0

�τ

Z t

tþθ
WðsÞ ds dθ

 !T

M

Z 0

�τ

Z t

tþθ
WðsÞ ds dθ: ð8Þ
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