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a b s t r a c t

Knee contact pressure is a crucial factor in the knee rehabilitation programs. Although contact pressure
can be estimated using finite element analysis, this approach is generally time-consuming and does not
satisfy the real-time requirements of a clinical set-up. Therefore, a real-time surrogate method to
estimate the contact pressure would be advantageous.

This study implemented a novel computational framework using wavelet time delay neural network
(WTDNN) to provide a real-time estimation of contact pressure at the medial tibiofemoral interface of a
knee implant. For a number of experimental gait trials, joint kinematics/kinetics and the resultant
contact pressure were computed through multi-body dynamic and explicit finite element analyses to
establish a training database for the proposed WTDNN. The trained network was then tested by
predicting the maximum contact pressure at the medial tibiofemoral knee implant for two different
knee rehabilitation patterns; “medial thrust” and “trunk sway”. WTDNN predictions were compared
against the calculations from an explicit finite element analysis (gold standard).

Results showed that the proposed WTDNN could accurately calculate the maximum contact pressure
at the medial tibiofemoral knee implant for medial thrust (RMSE¼1.7 MPa, NRMSE¼6.2% and ρ¼0.98)
and trunk sway (RMSE¼2.6 MPa, NRMSE¼9.3%, ρ¼0.96) much faster than the finite element method.
The proposed methodology could therefore serve as a cost-effective surrogate model to provide real-
time evaluation of the gait retraining programs in terms of the resultant maximum contact pressures.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Growing prevalence of knee osteoarthritis (OA) as the main
cause of knee arthroplasty on one hand and cost, risk and
complications of the surgery on the other hand have led to the
significant development of non-surgical gait modifications [1–7].
Gait modification aims to alter walking patterns to decrease knee
joint loading through minor changes in gait kinematics. Similarly
the load reduction on the artificial knee joint can also be achieved
through gait modifications and rehabilitation strategies to mini-
mize wear and prolong the clinical life time of the prosthesis. A
number of gait modifications have been reported in the literature
to reduce knee joint loading [8–12]. These modification strategies
have been mainly designed to offload the knee joint. However,

offloading gait interventions may reduce knee contact area, lead-
ing to an adverse increase in contact pressure on the joint bearing
surfaces. Therefore an off-loading strategy may not be very bene-
ficial and can even be detrimental to the knee joint [13]. Therefore
the resultant contact pressure on the articulating surfaces should be
considered in clinical implementation of rehabilitation programs.

Finite element analysis (FEA) is a powerful computational tech-
nique to calculate contact pressure [14–17]. However this approach is
highly time-demanding and computationally expensive. Therefore,
FEA is mainly used as a post-processing stage for multi-body dynamic
analysis to provide tissue-level information. In fact, the available FEA
methods do not satisfy the necessity of real-time calculation in a
clinical setup. In clinical rehabilitation, patients should be trained to
internalize the rehabilitation strategy as their daily walking patterns.
Therefore, real-time evaluation of contact pressure benefits the
clinical implementation of rehabilitation programs, for example to
investigate the effect of a rehabilitation strategy on the knee joint
contact pressure.
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Artificial intelligence is a relatively newmethod that has been used
in various fields of biomechanics as a real-time surrogate model [18–
21]. An artificial intelligent network consists of a number of processor
units (neurons) that are densely connected to each other via numeric
weights. Once a set of inputs and resultant outputs are presented to
the network; the causal relationships between inputs and outputs
would be captured and stored in numeric weights. Thus, the network
“learns” the interaction between inputs and outputs. Given a “new” set
of inputs that has not seen by the network before, the trained neural
network (surrogate model) can generalize the relationship to produce
the associated output and release the necessity of running the original
model and repetition of time consuming calculations [22]. In parti-
cular, neural networks have been jointly used with finite element
simulation in a variety of biomechanics studies such as load estimation
[23–25] and bone remodeling [26,27]. Study of Lu et al. to best of our
knowledge is the only study that has used the aforementioned
approach to predict the contact pressure [28]. Lu et al. predicted the
spatial distribution of contact stress at medial tibia cartilage for a
simplified contact model with 400 structural elements. A one-by-one
mapping was developed from the three dimensional force data space
into the resultant contact stress through a time delay neural network
(TDNN). However, their proposed TDNN had a fairly large structure
(1200 inputs, 400 outputs and 280 hidden neurons) for a simplified
contact model which limits its practical function in realistic applica-
tion. In fact due to the one-by-one mapping set-up, the proposed
TDNN structure cannot be used for a more realistic contact model
since increasing the number of elements in the model would increase
the number of inputs and outputs resulting in a more complicated
structure which requires further number of training data sets. On the
other hand, in clinical applications, resultant maximum contact pres-
sures are mainly of interests. In this case, the time history of spatial
contact pressure distribution is not required. Instead, the maximum
contact pressures and the corresponding contact regions that occur
over the entire gait cycle should be focused.

The aims of this study were to (1) propose a novel computa-
tional framework to predict the distribution of “maximum” contact

pressure instead of “spatial” distribution through a simple cost-
efficient neural network structure for a realistic contact model, and
(2) demonstrate the advantages of the proposed approach in an
application to provide a real-time evaluation of knee rehabilitation
strategies in terms of maximum contact pressure and correspond-
ing contact regions at the medial tibiofemoral knee implant.

2. Materials and methods

Artificial intelligent surrogates require a primary database to
describe the “causal” interactions between inputs and outputs
[29]. Therefore, a number of gait trials, obtained from literature,
were imported to multi-body dynamic (MBD) analysis to estimate
knee joint kinematics and kinetics. Resultant kinematics and
forces, from MBD analysis, were then used as boundary conditions
and load profiles in finite element analysis (FEA) to calculate the
contact pressure distribution. A data matrix constructed from knee
kinematics/kinetics (inputs) and contact pressures (outputs)
served as the required training database for the proposed surro-
gate model. The overall ability of this surrogate was then tested by
predicting the contact pressure for a number of rehabilitation gait
trials. It should be pointed out that FEA was used for a twofold
purpose: first, to construct the training database and second, as a
gold standard to compare with the surrogate predictions. Fig. 1
shows an overview of the methodology used in this study.

2.1. Database

Experimental gait trials of four subjects, implanted with unilateral
knee prosthesis (three male and one female, height: 168.372.6 cm;
mass: 69.276.2 kg), were obtained from a previously published rep-
ository [https://simtk.org/home/kneeloads; accessed on June 2013]. All
subjects were implanted with sensor-based knee prostheses that have
been specifically manufactured for in vivo measurement of knee joint
forces [30]. The database included three dimensional ground reaction
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Fig. 1. Schematic description of the proposed methodology.
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