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Redistricting consists in dividing a geographic space or region of spatial units into smaller subregions or
districts. In this paper, a Genetic Programming framework that addresses the electoral redistricting
problem is proposed. The method uses new genetic operators, called geometric semantic genetic
operators, that employ semantic information directly in the evolutionary search process with the
objective of improving its optimization ability. The system is compared to several different redistricting
techniques, including evolutionary and non-evolutionary methods. The simulations were made on ten
real data-sets and, even though the studied problem does not belong to the classes of problems for
which geometric semantic operators induce a unimodal fitness landscape, the results we present
demonstrate the effectiveness of the proposed technique.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The zone design problem (also known as redistricting) is the
process of dividing a geographic space or region of spatial units into
smaller subregions or districts. Probably, the most well-known
instance of the zone design problem is the electoral redistricting
problem. As reported by Bacdo et al. [1], electoral redistricting
consists in the partitioning of areal units, generally administrative
units, into a predetermined number of zones (districts) such that
the units in each zone are contiguous, each zone is geographically
compact and the sum of the populations of the areal units in any
district is as similar as possible in all the districts or lies within a
predetermined range [2]. Because of the spatial nature involved in
constraints, redistricting is usually seen as a type of spatial cluster-
ing. Due to its NP-completeness, the electoral redistricting problem
is considered a complex problem, and heuristic techniques seem to
provide the best solutions. In this paper, we propose the use of
Genetic Programming (GP) [5] to address the electoral redistricting
problem. In particular, we use recently defined genetic operators,
called geometric semantic genetic operators [11], that allow us to
integrate semantic awareness in the evolutionary process.

One of the strongest points of geometric semantic operators [11] is
that, using semantic information, they are able to induce, by con-
struction, a unimodal fitness landscape on all problems consisting in
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matching sets of input data into known targets (like supervised
learning problems, such as regression or classification). Geometric
semantic operators have been used so far on many different symbolic
regression problems (including several complex real-life applications
[8,19-21]), generally with excellent results, and the fact that the
fitness landscape is unimodal is often used as an argument to justify
those results [8,19-21]. In this paper, for the first time, we apply
geometric semantic operators to a problem that does not belong to
that class: the objective of the application studied here, in fact, is not
matching sets of input data into known targets. Thus, nothing can
make us believe that the fitness landscape induced by those operators
is unimodal in our case. Interestingly, the results we present demon-
strate that geometric semantic operators have a beneficial effect on
the search process also in this case. This fact hints that geometric
semantic operators may be useful not only in single-objective
supervised learning problems, but also in a larger class of problems,
and possibly the justification for their effectiveness goes beyond the
fact that they may induce unimodal fitness landscapes. This issue
opens the door to future investigation and deserves to be deepened in
the future.

The paper is organized as follows: Section 2 describes the
redistricting problem and its constraints; Section 3 presents the
standard GP algorithm and the canonical (syntax-based) genetic
operators; Section 4 defines the geometric semantic operators used
in this paper. Section 5 describes the representation of the candidate
solutions, the fitness function and how the geometric semantic
operators have been used in this work. Section 6 presents the
experimental settings and the obtained results. Here, a comparison
between the proposed framework and several existing redistricting
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techniques is also presented. Finally, Section 7 concludes the paper
and suggests ideas for possible future research.

2. Redistricting problem: Definition and constraints

In redistricting problems, the aim is to aggregate n geo-spatial
regions into ¢ partitions (or districts) subject to some constraints.
The most well-known application of the redistricting problem is
the electoral redistricting problem. Here, the objective is to create
districts usually by grouping smaller administrative units.

The constraints that define a “good” electoral redistricting plan
are as follows: 1. All the districts should be equal in population, 2.
Each district should be a single continuous territory, 3. Districts
should be compact.

The first constraint is known as population equality and it is
particularly important for an electoral redistricting plan: since
each district elects the same number of assembly members, they
should have approximately the same number of voters. To evaluate
the population equality, we use the sum of absolute deviations of
the districts populations from the average (or ideal) population of
a district:

3 ip-nl (1)
j=1

where p; is the population of district j, ¢ is the total number of
districts (or clusters) and yu is the average of population of all
districts.

The second constraint is the spatial contiguity constraint. A district
of regions is spatially contiguous when every region within the cluster
shares at least a part of its boundary with at least one other region
within the cluster and the number of its connected components is
equal to 1. Solutions that do not satisfy this constraint are not
considered as acceptable solutions by our proposed algorithm.

The third constraint is known as compactness. Compactness is
an attribute of the shape of the cluster. We define a compact
cluster as a cluster that has a shape very close to that of a simple
geometric shape. Examples of simple geometric shapes are circle,
rectangle, and square. To evaluate the compactness of the obtained
clusters we consider the following compactness measure:

radial compactness = ch > dj )
j=1ieG

where dj; is the Euclidean distance between the ith region and its

Jjth district center, while C; denotes the cluster j.

The problem statement is to divide a geographic area that
consists of n regions into c districts such that the total population
within each district is as equal as possible. Each of these c districts
must be spatially contiguous. Finally, all of the k districts must be
as compact as possible.

While the previous constraints are related to the electoral
redistricting problem, other constraints that are common in cluster-
ing problems should be considered. Let the set of initial regions be
R={rq{,r5,...,1n}, where r; is the ith region. Let ¢ the number of
clusters and M; the set of all the regions that belong to cluster i.
Then:

M;#gfori=1,....c
MiﬂMj=®fori;éj

o
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Regardless of the formulation, the redistricting problem is
formally computationally intractable (it is NP-complete) [3]. Hence,
as Bacdo et al. suggest [1], heuristic techniques seem to be the best
road available to produce good solutions to the problem in reason-
able computational time. This is certainly a compromise but

guaranteed optimality, independently of the problem's dimension,
seems at this stage simply too difficult.

3. Genetic programming

In this work, the electoral redistricting problem has been
addressed using a GP based system. GP [5] is one of the youngest
paradigms inside the computational intelligence research area called
Evolutionary Computation (EC) and consists in the automated learn-
ing of computer programs by means of a process mimicking
Darwinian evolution. GP evolves computer programs, traditionally
represented as tree structures. Trees represent candidate solutions
for the problem at hand and they can be easily evaluated in a
recursive manner. Every tree node has an operator function and
every terminal node has an operand, making mathematical expres-
sions easy to evolve and evaluate. In GP, a population of computer
programs (i.e. a set of candidate solutions) is evolved. That is,
generation by generation, GP stochastically transforms populations
of programs into new populations of, hopefully better, programs. The
search is performed as follows:

o Choose a representation space in which candidate solutions can
be specified. This consists in deciding on the primitives of the
programming language that will be used to construct pro-
grams. A program is built up from a terminal set (the variables
in the problem, and eventually a set of constants) and a
function set (the basic operators).

e Design the fitness criteria (i.e. one or more objective functions)
for evaluating the quality of a solution.

o Design a selection and replacement policy. Central to every EA
is the concept of fitness-driven selection in order to exert an
evolutionary pressure towards promising areas of the program
space. The replacement policy determines the way in which
newly created candidate solutions replace their parents (i.e.
existing candidate solutions) in the population.

e Design a variation mechanism for generating new solutions
from existing ones. Standard GP uses two main variation
operators: crossover and mutation. Crossover recombines parts
of the structure of two individuals (trees representing candi-
date solutions), whereas mutation stochastically alters a por-
tion of the structure of an individual.

After a random initialization of a set (population) of candidate
solutions (computer programs), an iterative application of selection-
variation-replacement is employed to improve the programs quality in
a stepwise refinement way. For a complete introduction to GP the
reader is referred to [4-6].

In this work, we used genetic operators that, diversely from the
canonical ones, are based on the concept of semantics that will be
introduced in the next section. To understand the differences between
the genetic operators used in this work (described in Section 4) and
the ones used in the standard GP algorithm, the latter are briefly
described.

“Standard” Crossover: The crossover operator is traditionally used
to combine the genetic material of two candidate solutions (called
parents) by swapping a part of one parent with a part of the other.
More specifically, having two parent individuals, sub-tree swapping
crossover (also known as “standard” GP crossover) proceeds by the
following steps:

e Select a random subtree in each parent. According to the
situations, the selection of subtrees can be, or not be, biased so
that some subtrees are selected with lower probability than
others.
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