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Manifold regularized sparse coding shows promising performance for various applications. The key issue
that must be considered in the application is how to adaptively select the suitable graph hyper-parameters in
manifold learning for the sparse coding task. Usually, cross validation is applied, but it does not necessarily
scale up and easily leads to overfitting. In this article, multiple graph sparse coding (MGrSc) and multiple
Hypergraph sparse coding (MHGrSc) for image representation are proposed. Inspired by the Ensemble
Manifold Regularizer, we formulate multiple graph and multiple Hypergraph regularizers to guarantee the
smoothness of sparse codes along the geodesics of a data manifold, which is characterized by fusing the
multiple previously given graph Laplacians or Hypergraph Laplacians. Then, the proposed regularziers,
respectively, are incorporated into the traditional sparse coding framework, which results in two unified
objective functions of sparse coding. Alternating optimization is used to optimize the objective functions, and
two, novel manifold regularized sparse coding algorithms are presented. The proposed two sparse coding
methods learn both the composite manifold and the sparse coding jointly, and it is fully automatic for
learning the graph hyper-parameters in the manifold learning. Image clustering tests on real world datasets

demonstrated that the proposed sparse coding methods are superior to the state-of-the-art methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Image representation plays an essential role in the image proces-
sing related field. Researchers have long strived to seek effective
sparse and parts-based representation schemes, such as Low Rank
Matrix Factorization [1-3], Markov Random Field [4,5] and Sparse
Coding [6]. Among them, sparse coding has become more and more
popular in real applications due to the following two reasons: (1) In
theory, it is consistent with the mechanism humans use to recognize
objects and (2) It achieves excellent performance in many applica-
tions. Given a set of data feature vectors, organized as an input data
matrix, sparse coding aims to find a basis vector pool (dictionary)
selecting as few basis vectors as possible (Each basis vector is called
the atom of the dictionary.) from the dictionary to linearly reconstruct
the data feature vectors while keeping the reconstruction error as
small as possible. Different from Low Rank Matrix Factorization, the
dictionary in sparse coding is usually overcomplete, that is, the atom
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number is much larger than feature dimensions; thus, guaranteeing
the sparsity of the reconstruction coefficients and leading to sparse
and parts-based representation of the data. Various sparse coding
methods have been presented [7] and applied to image restoration
[8], image super-resolution [9-11], image classification [12,13], com-
pressed sensing [14], face recognition [15,16], texture classification
[17,18], action recognition [19,20], object tracking [21,22], etc. Due to
the fact that sparse coding can reduce feature dimensions to improve
the computation efficiency for sparse feature learning, it has shown
promising performances in image classification [12,13], action recog-
nition [19] and other related applications.

Manifold regularized sparse coding methods [23-26] have been
proposed where the geometrical structure of the data distribution is
exploited and local invariance is considered. These methods are
suitable specifically for the data which is drawn from sampling the
probability distribution that has support on or near to a manifold of
the ambient space. Manifold learning [28-31] aims to discover the
underlying geometrical structure of the data distribution. Exist-
ing manifold regularized sparse coding methods usually use graph
Laplacian [23] or Hypergraph Laplacian [23,24] as the smooth oper-
ator to preserve the locality of data space, thus achieving better
performance over the original sparse coding. However, the existing
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manifold regularized sparse coding methods have a key issue that
must be considered, that is, how to adaptively select the graph
hyper-parameter in manifold learning for the sparse coding task.
Selecting hyper-parameters is tedious and difficult; no explicit rules
can be exploited. We usually apply cross verification to make suit-
able selections. However, the parameter space is so large that it is
impossible to obtain the optimal parameter by hand. In addition,
cross verification easily overfits the training and validation sets and
does not scale up for the huge amount of possible parameter sel-
ections. As a result, automatic manifold estimation is essential to
develop the effective manifold regularized sparse coding method.

In this article, multiple graph and multiple Hypergraph regular-
ization are proposed to measure the smoothness of sparse codes
along the geodesics of the data manifold. Furthermore, Multiple
Graph and Multiple Hypergraph regularizations, respectively, are
incorporated into the traditional sparse coding framework, which
results in two manifold regularized sparse coding methods where
the optimal intrinsic manifold and sparse coding are jointly learned
by alternating optimization. The proposed two sparse coding
methods enhance the learning performance of the existing mani-
fold regularized sparse coding and avoid the procedure of tuning
the graph hyper-parameters.

The contributions of this article are summarized as follows:

(1) Two novel, manifold regularized sparse coding methods (MGrSc
and MHGrSc) are presented for image representation. To more
effectively explore the intrinsic geometrical structure of the data
distribution and allow the sparse codes to move smoothly along
the data manifold, we propose the incorporation of multiple
graph and multiple Hypergraph regularization, respectively, into
the traditional sparse coding framework. The proposed regular-
izations more effectively preserve the locality of data space by
approximating the intrinsic manifold and transforming the graph
hyper-parameter selections into the problem of estimating the
combination coefficients given composite manifolds.

(2) Our proposed methods are formulated as an alternating optimi-
zation problem where the sparse coding and the optimal
intrinsic manifold are learned jointly. Two iterative based algo-
rithms are presented to solve this optimization problem. The
convergence curve of the algorithm is also provided.

(3) We conduct comprehensive experiments to empirically analyze
and compare our methods with the state-of-the-art methods.
The experimental results on real world image data sets demon-
strate that the proposed algorithms are superior to the follow-
ing existing methods: Principle Component Analysis, Normal
Cut [56], traditional sparse coding [6], Graph regularized sparse
coding [23], etc.

The remainder of this article is organized as follows. Section 2
describes the related work. In Section 3, we present the objective
function of the proposed methods. Section 4 presents the proposed
optimization strategy to optimize the objective function. Section 5
presents the experimental results on the real world datasets and, in
particular, comparisons with the state-of-the-art methods. Finally,
in Section 5, we present our conclusions.

2. Related work
2.1. Traditional sparse coding

Traditional sparse coding, which consists of two components — the
optimization for sparse representation and the learning of overcom-
plete dictionary, learns the optimal dictionary and finds the correspon-
ding sparse codes. Common optimization methods include matching
pursuit [32], orthogonal matching pursuit [33], and basis pursuit [34].

Other less common methods developed to solve the optimization
problem are the adaptive Lasso technique [35], reweighted #; mini-
mization [36], and multistage convex relaxation [37].

2.2. Learning of overcomplete dictionary

The dictionary is usually directly learned from training rather than
by using a predetermined dictionary [38]. One of the more recent
contributions is the sparse dictionary [39], which aims to merge the
advantages of trained and analytic dictionaries. A category-specific
and/or shared dictionary, has been proposed. Perronnin et al. [40]
presented a class dictionary adapted from a universal dictionary based
on the GMM model. Gao et al. [41] learn (1) for each category,
category-specific dictionaries which encode subtle visual differences
among the different categories, and (2) a shared dictionary for all the
categories which encodes common visual patterns. In addition, ano-
ther two types of dictionaries are presented: (1) multiscale dictionary
[42] where semi-multiscale structure is obtained by arranging several
fixed-sized learned dictionaries of different scales and (2) translation-
invariance dictionary [43] constructed by collecting all the translations
of the trained atoms.

2.3. Variants of traditional sparse coding

Traditional sparse coding is usually suitable to reconstruct data;
however, it exhibits poor performance on classification tasks.
Consequently, the following five variants of traditional sparse
coding are presented:

(1) Supervised sparse coding. Label information of a training
dataset is exploited to learn the dictionary; the corresponding
sparse codes are used for classification tasks. Zhang et al. [44]
incorporated labels directly into the sparse coding stage and
proposed a discriminative K-SVD method to guarantee class
separability.

Discriminative sparse coding. The class separability criteria
are further incorporated into traditional sparse coding, which
leads to discriminative sparse coding methods. Yang et al.
[45] introduced Fisher's discriminative criterion to the sparse
coding objective function to ensure that sparse representa-
tions have large between-class scatter but small within-class
scatter. Lian et al. [46] proposed a max-margin sparse coding
method, which incorporates the hinge loss function into the
sparse coding objective function.

(3) Structured sparse coding. Structured sparse coding methods
exploit the structure sparsity, such as group sparsity [47]. Gao,
Sun et al. [48,49] incorporate additional structured sparsity
priors to the sparse coding objective functions, which leads to
the promising performances on the applications.

Kernel sparse coding. Kernel trick, introduced to a traditional
sparse coding framework, leads to Kernel sparse coding [50],
which is the method in a high dimensional feature space
mapped by some implicit mapping functions.

Manifold regularized sparse coding. More recently, manifold
regularized sparse coding methods respect the underlying geo-
metry of the data distribution and achieve promising learning
performances. Existing sparse coding algorithms usually use
graph Laplacian or Hypergraph Laplacian to model the local
geometry of the data distribution, for example, Zheng et al. [23]
incorporated a graph Laplacian regularizer into a traditional
sparse coding objective function and presented graph regularized
sparse coding(GrSC). Gao et al. [24] proposed Laplacian sparse
coding(LapSc) and Hypergraph Laplacian sparse coding (HLapSc)
to preserve the local consistence of data space. In order to exp-
loit the available label to enhance the discriminative ability of
sparse coding learning, Wang et al. [25] introduced class label
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