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Canonical Correlation Analysis (CCA) reveals linear correlation relationship between two feature sets, but
fails to discover nonlinear relationship. Kernel CCA (KCCA) overcomes such a shortcoming. Unfortunately,
both of them fail to discover local structure of features whereas Locality Preserving CCA (LPCCA) possesses
this ability. It is found that LPCCA ignores relationship between global and local structures of features.
Moreover, these CCA-based methods have no ability to deal with single-view data which only has single
feature set. To this end, we apply Multiple Explicitly Kernel Mapping (MEKM) to the application at first and
take global and local structures of features into account. The proposed method is named Globalized and
Localized CCA with MEKM (GLCCA-MEKM). Experiments validate that (i) introducing MEKM can map
original features into multiple feature spaces so that multiple feature sets of data are obtained. Further in
these feature spaces, nonlinear correlation relationship between features are also gotten; (ii) taking global
and local structures of features into account makes the mapped features keep both original global and local
properties. These processes make GLCCA-MEKM possess the ability to deal with single-view data and be
locality-preserving. Therefore, GLCCA-MEKM has below contributions. First, GLCCA-MEKM can inherit the
advantages of traditional MEKM, deal with single-view data, and reveal nonlinear correlation relationship
between two feature sets. Second, GLCCA-MEKM extracts both global and local structural information more
reasonably and coordinates their relationship well. In doing so, mapped features can keep original global

and local properties. Finally, classifiers with GLCCA-MEKM obtain better classification performances.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Suppose a data set Z ={z1,25,...,z5} has n samples and each
sample z; consists of one feature pair, namely z; = {x;,y;} where x; and
y; are two features of this feature pair. Then we say Z = {X,Y} and
X={x1,...,xp}and Y = {yy, ...,¥,} are two feature sets. Here, each set
is treated as one view of data. When X and Y are two mean-
normalized feature sets, as a major linear subspace approach to
dimensionality reduction, Canonical Correlation Analysis (CCA) [1,2]
aims to find basis vector pair (wy,@,) in order to make the
correlation between the canonical component pair (w!X, a);Y) max-
imized. Component !X (wp’) can be treated as a new form of X (Y)
after dimensionality reduction. In other words, we can reduce
dimensionality of x; (y;) by the projection w}x; (w)y;) and wix;
(a);y,-) is a new form of x; (y;) in a low-dimensional space. Moreover,
fusing @ and @}* can form a new fused data set which consists of
new fused samples z,-,,ewz{w,fx,-,w;y,-} where i=1,2,...,n. Since
each data set has not only linear correlation relationship but also
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nonlinear one between two feature sets, it is found that CCA only
reveals linear one whereas ignores nonlinear one. In order to over-
come such a problem, Kernel CCA (KCCA) [3] has been proposed. In
KCCA, the original features are mapped into higher (even infinite)
dimensional spaces which are also named feature spaces via implicit
nonlinear mappings. Then a nonlinear problem in the original space
is transformed into another more possibly linear one in the feature
spaces so as to discover the nonlinear correlation hidden between
original features [4]. Experimental results have also validated that
compared with CCA, a classifier with KCCA has a better performance
than CCA used [3,5]. While both CCA and KCCA extract global
structures of features and fail to discover local structures. Thus
Locality Preserving CCA (LPCCA) [4] has been proposed to extract
local structures. LPCCA takes local neighborhood structures of
features into account and captures canonical correlation between
feature pairs. Different from CCA and KCCA, LPCCA does not need two
mean-normalized feature sets for experiments. Moreover, the experi-
ment has validated that LPCCA performs better than both CCA and
KCCA in pose estimation [4]. Although LPCCA overcomes disadvan-
tages of CCA and KCCA, it ignores the relationship between global
and local structures of features. Moreover, for CCA, KCCA, and LPCCA,
they resort to multiple feature sets and have no ability to deal with
single-view data which only has single feature set.
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According to above disadvantages of these CCA-based methods, we
adopt Multiple Kernel Learning (MKL) which can map original features
into multiple feature spaces. As a traditional kernel-based methods,
MKL [6-12] maps original feature x into different feature spaces
Fi,l=1,...,M, namely @(x) : x— F,; [9]. Mapped features in a feature
space can be treated as a view of data or a feature set. In practice,
mapping @(x) has two kinds of forms. One is named Implicit Kernel
Mapping (IKM) which is denoted as @'(x) and the other is named
Empirical Kernel Mapping (EKM) which is denoted as @°(x). MKL with
Multiple Implicit Kernel Mapping (MIKM) and Multiple Empirical
Kernel Mapping (MEKM) is named Multiple Implicit Kernel Learning
(MIKL) [9-18] and Multiple Empirical Kernel Learning (MEKL) respec-
tively. As we know, @'(x) is supposed to avoid the curse of dimen-
sionality and @°(x) gives the forms of the mapped features in the
feature space directly and this makes the classifier design more easier.
Both of them make MKL generate multiple views of data and keep the
linearity property of learning machine in the feature space at the same
time. For the convenience of dealing with the mapped features
directly, we focus on MEKM and take both global and local structural
information of features into account so that a new CCA-based method
is proposed. We name this new method as Globalized and Localized
Canonical Correlation Analysis with Multiple Empirical Kernel Map-
ping (GLCCA-MEKM). The process of GLCCA-MEKM includes two
steps. The first one is using MEKM to map original features into
multiple feature spaces in order to deal with single-view or multiple-
view data and reveal nonlinear correlation relationship between
feature pairs. The second one is getting the projections or new forms
of the original features so as to get fused samples with global and local
structures of features taken into account.

In fact, GLCCA-MEKM is different from the existing CCA-based
methods. First, CCA only reveals linear correlation relationship
between two feature sets and fails to discover nonlinear one. But
GLCCA-MEKM uses MEKM to form multiple feature spaces and has
an ability to deal with a nonlinear problem in the original space.
Then GLCCA-MEKM can discover the nonlinear correlation hidden
between the original features. Second, KCCA has an ability to reveal
both linear and nonlinear correlation relationships but ignores local
structures of features. GLCCA-MEKM overcomes disadvantages of
KCCA and extracts local properties of features. Third, LPCCA can
discover local structures of features but ignores the relationship
between global and local structures. To this end, GLCCA-MEKM takes
both global and local structures of features into account so that global
and local properties of features can be kept. Moreover, CCA, KCCA,
and LPCCA resort to multiple feature sets and have no ability to deal
with single-view data while GLCCA-MEKM overcomes it. In generally
speaking, the novelty of the proposed GLCCA-MEKM lies on the fact
that (1) the original features are mapped into multiple feature spaces
explicitly by MEKM. So GLCCA-MEKM inherits the advantages of the
traditional MEKM and reveals nonlinear correlation relationship
between multiple feature sets; (2) GLCCA-MEKM extracts both the
global and local structural information and coordinates the relation-
ship between them well. Furthermore, mapped features keep their
original global and local properties; (3) classifiers with GLCCA-MEKM
have better classification performances.

The rest of this paper is organized as below. In Section 2, for the
reason that we use CCA as the base of GLCCA-MEKM, some CCA-
based methods are reviewed. Section 3 gives the architecture of the
proposed GLCCA-MEKM. Section 4 shows all experimental results.
Finally, the conclusions and future work are given in Section 5.

2. Related work
As we said before, CCA [1,2] is the base of the proposed GLCCA-

MEKM and reveals linear correlation relationship between two
feature sets. But CCA cannot reveal nonlinear correlation relationship

whereas KCCA can. Both CCA and KCCA have no ability to discover
local structures of features. So LPCCA is proposed to overcome this
shortcoming. In this section, we give a brief description of CCA, KCCA,
and LPCCA.

21. CCA

As one of the principal subspace approaches to dimensionality
reduction, CCA aims to find basis vector pair, (wx, @y), for two mean-
normalized feature sets X = {xq,...,Xs} and Y = {y;, ..., ¥,} such that
correlation between canonical component pair (@!X, a);Y) is max-
imized [1,2]. Here, in a feature pair {x;,y;}, x; € R’ and y; € RY, n is the
number of feature pairs. For CCA, it should solve the below
optimization problem with constraints to get wy and wy:

max wlXP.Y'w,

IXP X wy =1 :
t
s WIYPY @y =1 )
where Po=I1—(1/m)l,I}, I,=[1,...,1]" eR" I is an nxn identity
matrix. P. is a mean-normalization matrix which satisfies PZ =P,
PIP. =P,.
By solving this optimization problem (1), we can obtain the
below generalized eigen-problem:

XPYT [ wx XPX" Wy
(o ) ()" (@) @

where the eigenvalue A is the objective value to be optimized in (1),
namely the canonical correlation. By solving Eq. (2), we can get d
eigenvalues which are larger than zero. So d pairs of (wyx, wy) are
gotten where the size of wy is p x 1 and the size of w, is q x 1. Let
Wi =[x, ..., Wxg] and Wy = [@y, ..., wyq] Where wy; and wy; form i-
th basis vector pair (@, @y;). Then Wy and W, can be used as two
projective matrices whose columns correspond to the first d largest
common eigenvalues of (2). The dimensionality reduction of the
original features can be performed in the form of WX and W} Y.
Here, X°=XP. and Y°=YP, are two mean-normalized feature
matrices. By this process, the original features can be both reduced
to d-dimensional ones. Then it can also be validated that we can use
two linear combination of X° and Y to denote the w, and w, as
below:

wy=Xa
wy=YP 3)

where a=[ay,...,a,]" and f=[B,,....,]" with their respective
entries, ;, f; as the linear combination coefficients. This is usually
called “dual representation” [19].

2.2. KCCA

In KCCA [3], we adopt two nonlinear mappings: @y : x—F}*
and @, : y—F,’. Here, n, and n, represent dimensions of these
two feature spaces F* and }‘;y. By these two mappings, original
features x; and y; can be mapped as @x(x;) and PD,(y;), where
i=1,2,...,n. For basis vector pair (wg,,wg,) in the feature space,
they have corresponding dual representations as below:

Do, = @X(X)a
we, =Dy (Y)p “4)

where @y(X) = {Dx(X1), ..., Dx(Xn)} and Dy(Y) = (DPy(y1), ..., Py(¥,)}.
Dy(X) and Dy (Y) can be treated as mapped feature sets of X and Y
respectively. The means of ®x(X) and @,(Y) are both zeros. Then
a=[ai,....,an)" and f=[B;.....5,)" denote corresponding dual
coefficient vectors in feature spaces. Similar to Eq. (1), for KCCA,
the objective function to be maximized can be written as
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