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a b s t r a c t

Learning based super-resolution (SR) methods, which predict the high-resolution pixel values but not
directly provide an estimation of uncertainty, are typically non-probabilistic and have limited general-
ization ability. Gaussian processes can provide a framework for deriving regression techniques with
explicit uncertainty models, but Gaussian Process Regression (GPR) has a significant drawback in being
time consuming. The computational complexity of GPR is cubic in the number of training examples,
which is prohibitively expensive for a large-scale training set. In this article, we have proposed learning
local GPR for image SR. Two algorithms are developed to support local GPR for super resolution. A data-
driven GPR based super-resolution algorithm is first developed to learn a local GPR model for every LR
patch on an input oriented training dataset with moderate size. In order to further improve the running
speed, a prototype based GPR algorithm is developed for super resolution. The proposed algorithm is
about one-order faster than the data-driven GPR solution because it makes models for the prototypes of
image patches rather than for each image patch. Thus, the local regression efforts are greatly reduced to
just finding the nearest prototype for each LR image patch and applying its corresponding pre-computed
projective matrix for super-resolution prediction. Our algorithms have greater robustness and usability
as they provide a formularized way to automatically learn the hyper-parameters introduced for
optimizing the covariance function, while most of the state-of-the-art super-resolution methods could
only utilize these parameters in a cross-verification way. Moreover, our algorithms offer confidence
values at the test points which benefit the pixels’ post-processing. Our algorithms are evaluated on
popular datasets that are widely used in the super-resolution literature, and the experimental results
have demonstrated that the efficiency and effectiveness of our proposed algorithms are comparative
with several state-of-the-arts super-resolution methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Image super-resolution (SR) is widely used in many practical
applications such as satellite and medical imaging, where the
analysis or diagnosis from low-resolution (LR) images can be
difficult. Therefore, SR has become a hot topic in the field of
computer vision. The goal of image SR is to generate a high-
resolution (HR) image from one or multiple low-resolution (LR)
input images. The SR problem is ill-posed because a low-resolution
image can be generated by many different high-resolution images
under different transformations. Up to now, a large number of
learning based SR approaches [11–19] have been developed and
they can yield promising results. However, the state-of-the-art
learning based super-resolution methods are typically non-
probabilistic and can predict the high-resolution pixel values but

not directly provide an estimate of uncertainty. Thus, they are
inadequate when the uncertainty is required. Moreover, the para-
meters used in these methods are specified a priori. In this article,
we present an explicit probabilistic model for SR. We introduce
Gaussian processes regression (GPR) for SR and our probabilistic
formulation provides a principled way to learn hyper-parameters.

The computer vision community has paid little attention to
Gaussian processes (GP) due to the fact that the Gaussian processes
conventionally limit the amount of training data, because the
computational complexity of GP is OðN3Þ, which is cubic in the
number of training examples and it is prohibitively expensive when
the training dataset is large scale. In this article, we focus on how to
make GPR work when the training dataset is large-scale. We
propose an approach which learns local GPR models for the SR
problem. We make a local GPR model for an LR image patch rather
than make a global GPR model. It is worth noting that each query LR
patch has its special local model. Two SR algorithms are developed
to support the local GPR solution. In the first algorithm, a training
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collection is searched for an LR image patch from the training
dataset, and then a GPR model is made depending on the training
collection. Because each image patch has its special GPR model, the
local GPR model is data-driven, and we name it data-driven
Gaussian Process Regression (DDGPR). In the second algorithm, we
first find prototypes for image patches and make GPR models for the
prototypes of the image patches. We name it prototype-based GPR
(PGPR). DDGPR focuses on the practicability of GPR and the super-
resolution accuracy. And PGPR focuses on low running time.

The three main contributions of this article are: 1) an explicit
probabilistic model is made for super-resolution based on Gaussian
Process regressionwhich could not only predict the high-resolution
values but also give their confidence values; 2) the data-driven GPR
based SR is developed, which is a local model and achieves the
promising SR performance; 3) the prototype-based GPR scheme is
developed, which reduces the computational complexity and is
one-order faster than DDGPR. We have shown that the proposed
approach can achieve state-of-the-art super-resolution results on
the benchmark image set with superior scaling ability.

This article extends our previous work [23] by proposing a novel
algorithm named PGPR. PGPR is different from DDGPR which is
proposed in [23] in the two major ways: 1) in DDGPR, the local GPR
models are made for image patches, while in PGPR, the local GPR
models are made for prototypes of image patches; 2) when an HR
image is generated from its LR image, we need to build an image
training dataset and learn a GPR model for each image patch in
DDGPR, while in PGPR we just anchor an image patch to its nearest
prototype and look up the corresponding prototype model which is
pre-computed and stored as a reference model. The two differences
lead to much fewer GPR models and significantly less computational
time of the HR image reconstruction for PGPR than for DDGPR. Thus,
PGPR is about one-order faster than DDGPR without scarifying much
accuracy. However, DDGPR can achieve more accurate results than
PGPR. Moreover, we also add additional empirical results and making
an in-depth analysis of our approach’s performance.

The remainder of this article is organized as follows. We
introduce the related work in Section 2, and we give a brief
overview of Gaussian Process regression in Section 3, and then we
describe the local Gaussian Process regression algorithms for
image super resolution in Section 4. The experimental results are
shown in Section 5. In the last section, we give our conclusions.

2. Related work

Generally, the state-of-the-art SR techniques can be categorized
into three classes: the interpolation based methods [1–6], the
reconstruction based methods [7–10] and the learning based
methods [11–19].

The interpolation-based methods are simple and fast, but the
quality of the interpolated super-resolution image is very limited,
because such methods cannot recover high frequency details. The
reconstruction based methods apply various smoothness priors and
impose the constraint that makes the HR image reproduce the
original LR image when properly downsampled. Therefore, the
performance of these methods relies on the prior information and
the compatibility with the given image. Moreover, it degrades rapidly
with the increase of the magnification factor, or the decrease of the
size of the input image.

Learning based SR methods are typically example-based and can
be characterized as non-probabilistic estimation. They have yielded
promising results in recent years. Freeman’s work [11] is a milestone
for the example-based super-resolution methods. Image super-
resolution is transformed into the problem of estimating high-fre-
quency details by interpolating an image into the desired scale. Then,
the estimations of high-frequency patches are performed based on

the nearest neighbor (NN) patches of the corresponding input low-
frequency patches, and the compatibility of output patches is resolved
by using a Markov network. Recently, approaches based on NN have
achieved advanced progress [24,25]. Michaeli et al. [24] proposed a
nonparametric blind SR method. In their method, the SR is treated as
an image filtering problem. Hypothetically, an LR image is obtained
by blurring and subsampling an HR image. Thus, an SR image can be
obtained by using the optimal kernel to filter the LR image. The
optimal blur kernel depends on the NN search and can be approxi-
mated iteratively. Zhu et al. [25] proposed a deformable patch based
SR approach. The deformable similarity is developed and used to find
the NN patches. It is well known that the nearest neighbor based
estimation suffers from overfitting, that is, the estimation function
can explain the training data perfectly but it cannot be generalized to
unknown data. This is prominent for image super-resolution. Thus, it
is reasonable to improve the NN-based methods by adopting learning
algorithms with regularization capability to avoid overfitting.

Many methods made attempts to regularize the SR estimation.
Chang et al. [12] made an assumption that the appearances of
similar patches in low and high-resolution images may have
similar local geometrics and form the manifolds. A high resolution
image patch is the linear combination of its HR nearest neighbors
and the combination weights are corresponding to those of low-
resolution patches. But it is not clear whether the assumption of
the manifold structure of similar LR or HR patches is satisfied.

In recent years, sparse regularization has become a very popular
tool in super-resolution [15],[18] which regularizes the reconstruc-
tion coefficients. Yang et al. [18] first cast the super-resolution
problem into a sparse representation problem. Sparse representation
based SR methods usually learn a dictionary, and an input image
patch can be represented by the dictionary. These methods assume
that the representation coefficients are sparse. There are two
disadvantages of sparse representation based SR: 1) a trivial solution
makes the dictionary too large; 2) there is ambiguity between the HR
and LR patches.

It is also rather straightforward to regularize the regressor
itself. Ni et al. [16] utilized support vector regression (SVR) to solve
the super-resolution problem in the frequency domain and pose
the super-resolution as a kernel learning problem. Kim et al. [19]
posed the estimation of high frequency details as a kernel ridge
regression problem in which he regularized the function with a L2
norm. The downside of these methods is that they assumed the
type of fitting function and the used hyper-parameters are
specified a priori. As we know, the regression problem is sensitive
to the assumption function. If the assumption function doesn’t
match the distribution of the data, the correct solution cannot be
achieved. The advantages of GP based SR are: 1) the regression
function is a latent variable which is decided by the data rather
than by the user; 2) the hyper-parameter used in the covariance
kernel will be optimized rather than specified a priori.

The method most closely related to our work is reported in
[17]. He et al. [17] found a local neighborhood at the position of a
query LR patch and implemented the GPR on the local region. This
operation is like a filter. An SR image is yielded from a single LR
image without any external training set, and each HR image patch
is the output of GP regression on its corresponding LR nearest
neighbors which contain dozens of LR image patches. Our work is
different from He’s work [17] because we build a GPR model for SR
based on external training data which can be large scale and we
focus on low running time.

GP has been recently introduced in computer vision and achie-
ved promising results. Ashish [26] implemented GP on active object
categorization, Urtasun [27,28] used GP to model human motion,
and William [29] utilized GP for stereo segmentation. However, few
literatures discussed the GP framework for SR. In this article, we
extend a GPR based approach to solve the SR problem.
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