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a b s t r a c t

During the last decade, multi-label learning has attracted the attention of more and more researchers in
machine learning field due to wide real-world applications. Existing approaches often predict an unseen
example for all labels based on the same feature vector. However, this strategy might be suboptimal
since different labels usually depend on different aspects of the feature vector. Furthermore, for each
label there is close relationship between positive and negative instances, which is quite informative for
classification. In this paper, we propose a new algorithm called ML-DFL, which trains a model for each
label with newly constructed discriminative features. In order to form these features, we also propose a
spectral clustering algorithm SIA to find the closely located local structures between positive and
negative instances, which are assumed to be of more discriminative information, and then transform the
original data set by consulting the clustering results in a simple but effective way. Comprehensive
experiments are conducted on a collection of benchmark data sets. The results clearly validate the
superiority of ML-DFL to various competitors.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multi-label learning or multi-label classification deals with
learning problems where each instance may be associated with
multiple labels simultaneously. For example, a document may be
associated with several given topics, including entertainment and
sports [1]; a gene has a few functional classes, such as energy and
cellular biogenesis [2]; an image can be annotated as sun or sea [3].
This is in contrast with traditional single-label (i.e. binary or
multiclass) learning problems where each instance is only relevant
to a single label.

Over the last decade, more and more researchers are engaged in
studying multi-label learning problems due to its wide real-world
applications [1–3]. Substantial multi-label learning approaches have
been proposed [4]. Most approaches learn one classifier for each
label directly based on the original instance x under some assump-
tion, such as a shared subspace underlying multiple labels [5] or
label sparsity [6]. These algorithms have achieved great success, but
they may be suboptimal in the multi-label settings.

Different labels have distinct characteristics of their own. Each
label highly depends on some specific aspect of the original instance.
Zhang [7] has proven the effectiveness of constructing label-specific
features for each label. For each label, LIFT performs clustering
analysis in the positive and negative instances respectively, and then

constructs label-specific features by checking the distance between
the original instance and the clustering centres. However, it does not
utilize the discriminative information that lies between positive
and negative instances. A portion of positive instances may be close
to a portion of negative ones, which has significant impact on the
performance of multi-label learning algorithm. Therefore, we con-
jecture that if we can locate the close latent structures between
positive and negative instances, a more effective algorithm can
induced.

To justify our conjecture, we propose a new algorithm called
Multi-label Learning with Discriminative Features for each Label
(ML-DFL), which is based on a new spectral clustering algorithm,
Spectral Instance Alignment (SIA). For each label, SIA constructs the
similarity matrix between positive and negative instances and then
applies spectral clustering analysis to extract the closely located
latent structures between them. To highlight the difference, ML-DFL
calculates the distances between each original instance and the
clustering results, and treats them as new features which are
expected to be more discriminative than the original instance. Then
we train the lth classifier based on new features. To validate the
effectiveness of ML-DFL, we conduct comprehensive experiments
on a collection of benchmark data sets. Experimental study shows
clear advantage of ML-DFL over various competitors.

The rest of this paper is organized as follows: Section 2 gives a
brief literature review on multi-label learning. Section 3 describes
our proposed algorithm ML-DFL in detail. We present experimen-
tal settings, data sets and evaluation criteria in Section 4. Section 5
contains detailed experiments and discussion. Finally, Section 6
concludes this paper.
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2. Related work

Before embarking on a formal description of our proposed algo-
rithm ML-DFL, we first review related work on multi-label learning.
Generally speaking, existing multi-label learning approaches can be
categorized into two classes: problem transformation methods and
algorithm adaptation methods.

2.1. Problem transformation methods

The common strategy adopted by these methods is to trans-
form a multi-label problem into one or more single-label classi-
fication problems. Then many existing single-label algorithms can
be employed, such as support vector machines (SVM) [3], k nearest
neighbour (kNN) [8], and Naive Bayes [9]. The final prediction of
an unseen instance is formed by combining the predictions of all
single-label classifiers. This strategy is attractive since it is flexible
to combine existing single-label algorithms and facilitates the
algorithm design.

Binary relevance (BR) [3], the most straightforward and intui-
tive method, is to decompose a multi-label problem into L
independent single-label sub-problems. AdaBoost.MH [1] decom-
poses a multi-label problem into L independent binary classifica-
tion problems each of which is handled via AdaBoost [11]. The
main limitation of BR and AdaBoost.MH is the ignorance of label
correlations since it is well believed that there is substantial and
complex relationship between labels. It is the label relationship
that distinguishes multi-label problems from classical binary or
multiclass ones. LIFT [7] trains the classifier for the lth label with
new training examples constructed via performing clustering on
positive and negative instances separately. It needs considering
the relationship between positive and negative instances for
performance improvement. BRkNN [10] combines BR and k near-
est neighbour method together. When testing a new instance, it
first searches for the k nearest neighbours and decides the final
prediction for each label. It suffers from high dimensionality of
feature space and huge memory burden. [12] proposes a modified
one-against-one SVM classifier for multi-label text categorization
using the SVM's predictions and probability, which is computa-
tionally expensive.

Ranking by pairwise comparison (RPC) [13] takes pairwise
correlations between labels into account. However, it is highly
dependent on a “zero” point to separate relevant labels from
irrelevant labels when predicting. To overcome this limitation,
calibrated label ranking (CLR) [14] is proposed. CLR uses BR to learn
the “zero” point. However, both RPC and CLR consider at most the
relationship between each pair of labels while neglecting higher
order correlations, i.e. correlations among three or more labels. Two
stage architecture (TSA) [15] adopts a two-stage architecture to
utilize pairwise relationship between labels. In the first stage, it
learns one classifier for each label based on BR, and in the second
stage, it combines each pair of labels for further training according
to their prediction probability in the first stage. Although it reduces
the number of models in CLR, it is still time consuming.

Label power-set (LP) [16] (or label combination [17]) is a simple
yet effective method that treats each distinct label combination as
a new unique label, thus transforming the multi-label problem
into a multiclass problem. However, when the relationship is
rather complex or there are plenty of possible labels, LP fails due
to the high time complexity of training and predicting. To alleviate
the drawbacks of LP, two ensemble approaches are proposed: each
base classifier of random k-labelset (RAkEL) [18] focuses on
random k labels out of L labels, while that of ensemble of pruned
sets (EPS) [17] focuses on frequent label combinations which are
found by pruning technique. Both of them suffer from high model
complexity. Ensemble of classifier chains (ECC) [19] is also an

ensemble method each base classifier of which is built on the
predictions of all previous learned models along the classifier
chains. One main limitation is that it treats the predictions the
same as attributes in xi. Another limitation is that CC searches
along a random label order in which the former few predictions
may have negative impact on the later predictions. Probabilistic
classifier chains (PCC) [20] exhaustively searches all possible paths
to find the most confident label combinations. It cannot handle
multi-label problems with a large number of labels as a result of its
tremendous complexity.

2.2. Algorithm adaptation methods

Algorithms of this kind are formed by adapting single-label
algorithms to multi-label cases. They are trained like traditional
single-label algorithms and directly give the predictions of a new
instance. The main attractive point of these methods is that they can
employ the characteristics of a multi-label learning problem in a
more simple, concise and elegant way. Usually these methods utilize
the second order (pairwise) or higher-order label correlations.

Ranking support vector machine (RankSVM) [21] modifies SVM
to multi-label cases by only considering pairwise labels. It assumes
that the decision value for a relevant label should be ranked higher
than that for an irrelevant one. RankSVM is computationally
expensive because the number of constraints is O(NL2). To combat
this problem, an efficient learning algorithm, named maximum
margin multi-label ranking (M3LR) [22], is developed. M3LR
relaxes the constraints and thus reduces the computation time
drastically. Both RankSVM and M3LR are ranking-based methods
which require a “zero” point to separate relevant labels from
irrelevant ones like RPC when making predictions. Thus their
predicting accuracy is highly dependent on user-specified thresh-
old. SVM-ML [23] introduces a virtual “zero” label to automatically
learn such a threshold. It reduces the complex objective in
RankSVM to L sub-problems, each only involving the virtual label
and one true label. AdaBoost.MR [1] deals with the ranking
problem between relevant and irrelevant labels using boosting
technique. Xu [24] proposes a novel method for multi-label
learning by combining binary SVM and a ranking loss to combat
against the limitation of the traditional one-versus-rest method.
The ranking-based methods mentioned above are all hindered by
forbidding computational cost. Another drawback is their ignor-
ance of higher-order label relationship.

Multi-label k nearest neighbour (ML-kNN) [8] extends tradi-
tional k nearest neighbour method to multi-label cases by first
identifying the k nearest neighbour examples and then employing
maximum a posteriori (MAP) to make predictions. ML-kNN is a
lazy learning method which is not applicable in problems with a
large training set. Multi-label learning based on shared subspace
(ML-SS) [5] assumes that all labels share a common subspace,
which is extended from the multi-task setting [25]. However, the
assumption may not hold in real cases since usually only several
labels share a common subspace. Multi-label hypothesis reuse
(MAHR) [26] uses boosting technique generally and presumes that
only linear relationship exists among labels which may decrease
the performance when there are substantial complicated relation-
ships. Instance-based learning by logistic regression (IBLR) [27],
which combines instance-based learning algorithms and logistic
regression together to exploit label correlations and interdepen-
dencies, is not application for large-scale problems since it needs
to hold the whole training set in memory. Sun et al. [28] uses
hyper-graph to model the higher order relatedness between labels
and employs hyper-graph spectral learning formulation for multi-
label learning which can be resolved by the least squares method
under mild conditions. Though simple, its performance is unsa-
tisfactory since it is based on least squares.
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