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noisy depth inputs.

We propose a new method to enhance the lateral resolution of depth maps with registered high-resolution
color images. Inspired by the theory of compressive sensing (CS), we formulate the upsampling task as a
sparse signal recovery problem that solves an underdetermined system. With a reference color image, the
low-resolution depth map is converted into suitable sampling data (measurements). The signal recovery
problem, defined in a constrained optimization framework, can be efficiently solved by variable splitting
and alternating minimization. Experimental results demonstrate the effectiveness of our CS-based
method: it competes favorably with other state-of-the-art methods with large upsampling factors and

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a wide range of devices have been developed to
measure the 3D information in the real world, such as laser scanners,
structured-light systems, time-of-flight cameras and passive stereo
systems. The depth maps (range images) captured with most active
sensors usually suffer from relatively low resolution, limited precis-
ion and significant sensor noise. Therefore, effective depth map post-
processing techniques are essential for practical applications such as
scene reconstruction and 3D video production, especially for 3D face
recognition [1] and 3D object recognition [2,3].

In this paper, we present a method to enhance the spatial res-
olution of a depth map with a registered high-resolution color image.
Our method is based on two key assumptions: first, neighboring
pixels with similar colors are likely to have similar depth values; sec-
ond, just like most natural images, an ideal depth map without noise
corruption has large smooth regions and relatively few discontinu-
ities, and therefore can be approximated with a sparse representation
in some transform domain such as multiscale wavelets. Although the
first assumption has been extensively explored in recent depth post-
processing work [4-9], relative less attention has been given to the
second assumption [10,11].

Inspired by the theory of compressive sensing [12,13], we try to
recover the upsampled depth map in a sparse signal reconstruction
process. We first compute a set of measurement data from the low-
resolution depth map. The measurement data near depth disconti-
nuities are generated with a cellular automaton algorithm, and no
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filtering techniques are involved in the process. Then we recon-
struct the depth signal in an optimization model, with constraints
on measurements, smoothness and representation sparseness. An
efficient numerical method is provided to solve the model with
linear complexity in the number of the image pixels. Experimental
results show that, by solving the problem in a CS-based framework,
our algorithm can produce high quality depth results with relatively
low resolution depth maps. And it shows stable performance under
noisy conditions.

The rest of the paper is organized as follows. Related work is
reviewed in Section 2. Section 3 provides a brief introduction to the
CS theory, whereas our CS-based upsampling model is presented
in Section 4. After that, in Section 5, we describe how to generate the
sampling data for the model, and we provide a numerical solution
in Section 6. Section 7 reports the experimental results and discusses
how to register a low resolution depth map and its companion high
resolution color image as well as the influence of sampling pattern.
At last, conclusions are given in Section 8.

2. Related work

As stated in Section 1, the idea of enhancing a depth map with
a coupled color image is not new. Existing methods can be roughly
classified as either filtering-based methods [5-8] or optimization-
based methods [4,9].

Filtering-based methods employ color information with various
edge-preserving filters [14,15]. Kopf et al. [5] use a joint bilateral
filter to refine the upsampled depth results. Yang et al. [6] instead
initialize a cost volume and iteratively smooth each cost slice with a
bilateral filter. Sub-pixel accuracy is achieved with an interpolation
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scheme. Huhle et al. [8] rely on nonlocal means filters (NLM) for
depth denoising and upsampling. One advantage of filtering-based
methods is that they can be easily parallelized on graphics hard-
ware [7,8]. However, to find enough support for each pixel, large
filtering kernels are often used, or the filters have to be performed
iteratively, which might lead to over-smoothed depth results.

The methods which are more closely related to our algorithm are
the optimization-based methods [4,9]. In [4], Diebel and Thrun
construct a two-layer Markov Random Field model for depth map
upsampling. The color information of neighboring pixels is encoded
as edge weights of the graph. Recently, Park et al. [9] improve this
model by including a multi-cue edge weighting scheme and an NLM
energy term, which turns out to be very effective for preserving fine
structures and depth discontinuities. To make the problem tractable,
both methods use quadratic cost functions, which can be solved
using standard numerical methods such as conjugate gradient. Our
method differs from these methods in which we formulate the
model with [; sparseness and total variation constraints, which
shows the more robust behavior against noise and low sampl-
ing rates.

Recently, some researchers have explored sparse representations
for depth map processing [10,11]. ToSi¢ et al. [10] use sparse coding
techniques [16] to learn a dictionary from Middlebury disparity data
sets. This dictionary is exploited in a MRF model, which brings
accuracy improvements for stereo depth estimation and range image
denoising. Hawe et al. [11] propose a CS-based depth estimation
method from sparse measurements. They show that, by taking only
5% of the disparity data as measurements, their method can recover
the full disparity map with high accuracy, which is quite impressive.
An essential point of their method is that the pixels lying at depth
boundaries should be selected as sampling points, otherwise the
reconstruction accuracy would be seriously affected. Unfortunately,
such information is unavailable in our low-resolution depth inputs.
We provide a novel method to generate measurements at these
sampling positions with a registered reference color image, which
proves crucial for the upsampling accuracy. Moreover, we employ a
different CS model with better regularization ability.

3. CS theory and underdetermined linear system

CS theory finds an optimal solution x" from the observed data
y e R™ by reducing the problem to solving an underdetermined
linear system. In mathematical terms, the observed data y™ is
connected to the signal X" of interest via

Px=y M

where m <n, x is the s-sparse vector which only has s nonzero
components and the measurement matrix @ e R™" models the
linear measurement process. Traditional wisdom of linear algebra
suggests that the number m of measurements must be at least as
large as the signal length n. Indeed, if m <n, the classical linear
algebra indicates that the underdetermined linear system Eq. (1) has
infinite solutions. In other words, without additional information, it
is impossible to recover x from y in the case m < n. However, with
additional sparsity assumption, it is actually possible to reconstruct
the sparse vector x from underdetermined measurements y = @x
because many real-world signals are sparse. Even though they are
acquired with seemingly too few measurements, exploiting sparsity
enables us to solve the resulting underdetermined systems of linear
equations. More importantly, there are many efficient algorithms for
the reconstruction [17-19].

Specifically, CS theory reconstructs x as a solution of following
combinatorial optimization problem

min  IX|lo
X

st. dx=y 2)

where ||X||o denotes the number of nonzero entries of a vector.
However, the minimization problem is nonconvex and NP-hard. It
thus is intractable for a modern computer. An alternative method is
¢1 minimization, which can be interpreted as the convex relaxation
¢ minimization.

min - [x]l4
st. dx=y 3)

One major shortcoming of above considerations is that they do
not carry over to the complex setting such as the contaminated
measurements y. As a remedy, we can directly extend the #; mini-
mization (3) to a more general #; minimization taking measurement
error into account, namely,

min - [1x]lx
st | Px-yl5<e @)

It is worth noting that the solution of Eq. (4) is strongly linked
to the output of the #; denoising, which consists in solving, for
some parameter >0

minf|Ix|l1 +3 | Px I3 ®)

Expecting Eq. (3) can restore any x for any & is unreasonable.
Instead, CS theory only proves that for any integer n> 2 s, there
exists a measurement matrix @ e R™" with m=2 s rows such that
every s sparse vector X e R" can be recovered from its measurement
vector y e @x as a solution of Eq. (3). However, finding out the
measurement matrix @ is a remarkably intriguing endeavor. To date,
it is still an open problem to construct explicit matrices which are
provably optimal in a compressive sensing setting. One novelty of the
work is just providing a method to construct the measurement
matrix @ for depth upsampling.

The depth upsampling problem can be reduced to the problem
of using the underdetermined linear system Eq. (1) to find an
optimal solution x" from few measurements y™ because depth
upsampling aims to restore a high-resolution depth map from a
low-resolution depth map and the values of the low-resolution
depth map can be viewed as the samplers of the high-resolution
depth map. Unfortunately, depth maps are not usually sparse in the
canonical (pixel) basis. But they are often sparse after a suitable
transformation, for instance, a wavelet transform or discrete cosine
transform. This means that we can write X =¥z, where z" is a
sparse vector and ¥"™" is a unitary matrix representing the trans-
form. Recalling y = @x, depth upsampling finds a solution x = YT
from the underdetermined linear system Eq. (6).

Yz =y (6)

Obviously, the underdetermined linear system (6) is similar to
the underdetermined linear system (1) and the similarity leads
us to guess that CS theory also deals with this kind of under-
determined linear system. Indeed, studying Eq. (6) is the origin
of CS theory. Without any doubt, CS theory can efficiently solve
it [12,13,20] by using the optimization problem (3).

4. CS-based upsampling model

We build our upsampling model upon a fundamental fact that
many signals can be represented or approximated with only a few
coefficients in a suitable basis. Consider a high-resolution depth
map d e R" in column vector form, it can be linearly represented
with an orthonormal basis ¥ € R™" and a set of coefficients x e R":
d=¥x,x=¥"d. The map d is linearly measured m times (m < n),
which leads to a set of measurements y e R™ with a measurement
matrix @ e R™": y = @d. The CS theory tries to recover depth map
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