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a b s t r a c t

This paper investigates the problem of designing HN filter for gene regulatory networks (GRNs) with

time-varying delays and Markovian jumping parameters. Since in real gene networks the current jump

mode is not easily accessible, the filter parameters are considered to be independent from the current

system mode. By using mode-dependent Lyapunov–Krasovski functionals, appropriate conditions for

the stochastic stability and disturbance attenuation of mixed GRN/filter system is derived. Mode

independent filter gains are then obtained from some sufficient conditions in the form of linear matrix

inequalities which are easy to solve by numerical methods. In the end, a numerical example and the

relevant simulations are presented to evaluate the results.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the interaction between genes, proteins and
molecules forming cellular systems have been one of the most
important aspects of post-genomic biology. Specifically, stability
and modeling problem of gene regulatory networks (GRNs), as a
significant area of research in the biological and biomedical
sciences, have attracted much attention [1–5]. GRNs are the
mechanisms that regulate the expression of genes. The change
in expression of genes is regulated negatively or positively by
their own produced proteins. The main mathematical models
proposed to model the genetic networks are Boolean networks
[6,7] and differential equation models [2,8]. Examining gene
expression data, it seems that the gene expression levels tend to
be more continuous rather than binary.

In differential equation modeling of GRNs, similar to modeling
other dynamical systems, the exact model can hardly be obtained.
It is mostly because of the modeling errors, external perturbation
and parameter fluctuations. So it is important to study the robust
problem of such networks with noise, errors and perturbations.
Also, It is shown in [9–11] that the time taken for the gene
transcription and translation are not negligible in the dynamics of
GRNs. The mathematical models without addressing the delay
effects may provide wrong predictions of the mRNA and protein

concentrations. The delays are usually considered as time-varying
delays [9] and [10–12].

The existence of switching mechanisms in gene networks is a
well known fact [13,14]. To address the switching nature, authors
in [15,16] have proposed Markovian jump GRNs with the empha-
sis on quantitatively describing of gene regulation. Markovian
jump GRNs are hybrid systems with their discrete state varying as
a continuous-time finite state Markov process. So, GRNs can be
assumed as a type of Markovian jump nonlinear systems with
noise and delays. The stochastic stability and control problem of
delayed nonlinear systems with and without Markovian jumps
are investigated in [17–19].

To achieve some biological objectives such as identifying genes of
interest and drugs extraction, biologists are interested in knowing
the concentration values of mRNA and protein in gene networks. To
this end, the problem of filtering has been investigated for nonlinear
genetic regulatory networks in many recent works such as in
[20–23]. In [20], authors have designed a filter for stochastic GRNs
including noise and fixed transcription and translation delays. But
the switching mechanism in GRNs has been disregarded. In [21], the
problem of state estimation for Markovian jump GRNs with time-
varying delays has been investigated but the noise in GRNs
dynamics has not been considered. [22], [23] present the investiga-
tions on the filtering for the GRNs with distributed time delays.

In all above works on Markovian jump GRNs filtering, the
complete access to present system mode is presumed. In other
words, the filter gains are all obtained as mode-dependent values.
Such an assumption may not hold in many real world situations.
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There are many situations in which the state of the Markov
process is not available for observation. For instance, in a cancer
treatment application, it is not possible to track the expression
status of all genes in the network. The availability of the Markov
states may be limited by cost, physical accessibility or other
considerations. Clearly, in such a case the filtering techniques of
previous works cannot be implemented. The control problem of
GRNs with non-accessible Markov states in Probabilistic Boolean
Networks is investigated in [24]. However, to the best knowledge
of authors, all dynamical filters designed to monitor the states of
GRNs need the switching status to be available. In the literature of
Markovian Jump Systems (MJSs), the problem of mode-indepen-
dent filtering is addressed in [25–27]. To design mode-indepen-
dent and deterministic filters or controllers for MJSs, It is
important to use mode-dependent Lyapunov functions. Using
mode-independent Lyapunov functions, introduces very strong
conservatism on the filter performance [26].

Even in the area of MJSs, there exist few numbers of studies on
the mode-independent filtering in presence of noise and time-
varying delays. According to that mentioned above, there is a
strong motivation to design a mode independent filter based on
mode dependent Lyapunov functions. Such filters have been
neither investigated in the literature of MJLs and gene regulatory
networks with time delays.

The main idea in this paper is to design a mode-independent
filter for dynamic GRN model including noise and time-varying
delays while using mode-dependent Lyapunov functions. The
designed asymptotically stable filter ensures mean square stabi-
lity for the estimation error dynamics and a prescribed upper-
bound on the L2 -induced gain from the disturbance signals to
the estimation error. The design method is based on assuming a
special form for Lyapunov matrices. To synthesize the filter gains
from the stochastic stability conditions some techniques and
transformations are applied. The filter designs are given in terms
of linear matrix inequalities (LMIs). The effectiveness of results
are tested via a simulation example.

This paper is organized as follows: Section 2 describes the
model of Markovian jump Genetic regulatory networks and the
filter structure and gives some definitions and preliminaries on
stochastic stability of GRNs; Section 3 presents the main results
on filter design, Section 4 gives a simulation example and finally
Section 5 concludes the paper.

2. System description and preliminaries

In this paper, the following genetic regulatory networks are
considered [2]:

_mðtÞ ¼ AmmðtÞBf ðpðt�sðtÞÞÞþL
_pðtÞ ¼ AppðtÞþDmðt�tðtÞÞ ð1Þ

in which m(t)¼[m1(t),m2(t),y,mn(t)]T, p(t)¼[p1(t),p2(t),y,pn(t)]T

and mi(t),pi(t)AR are the concentrations of mRNA and protein of
ith node. The parameters in (1) are considered as follows:

Am ¼ diagð�am1,�am2,. . .,�amnÞ,

Ap ¼ diagð�ap1,�ap2,. . .,�apnÞ,

D¼ diagðd1,d2,. . .,dnÞ,

L¼ ½l1,l2,. . .,ln�
T ,

f ðtÞ ¼ ½f 1ðtÞ,f 2ðtÞ,. . .,f nðtÞ�
T :

in which, ami’s and api’s are the degradation rates of mRNA and
protein and di’s represent the translation rates. fi(x)¼((x/b)H/
1þ(x/b)H) is a monotonically increasing function, and BARn�n

is the coupling matrix of the genetic networks. li’s stand for the
basal rates of degradation. Vectors mn, pn are said to be an
equilibrium point of system (1) if they satisfy Ammn

þBf(pn)þL¼0

and Appn
þDmn

¼0. For convenience, we always shift an intended
equilibrium point (pn,mn) to origin by letting xm(t)¼m(t)�mn,
xp(t)¼p(t)�pn. Thus, the GRN dynamics could be rewritten as:

_xmðtÞ ¼ AmxmðtÞþBgðxpðt�sðtÞÞÞ
_xpðtÞ ¼ ApxpðtÞþDxmðt�tðtÞÞ ð2Þ

where g(xp(t))¼ f(xp(t)þpn)� f(pn). Since f is monotonically
increasing function with saturation, it satisfies for all a,bAR with
aab:

0r
f ðaÞ�f ðbÞ

a�b
rk: ð3Þ

When g(.) is differentiable, the above inequality is equivalent to
0rdf(a)/dark. From the relationship between f(.) and g(.), we
know that g(.) satisfies the sector condition 0rg(a)/ark, or
equivalently:

gðaÞðgðaÞ�kaÞr0 ð4Þ

t(t) and s(t) are time-varying delays which satisfy the following
constraints:

0rsðtÞrs, _sðtÞrasio1
0rtðtÞrt, _tðtÞratio1 ð5Þ

According to what is said about stochastic switching mechan-
ism in gene networks, the model perturbations, external noise
and disturbances, we consider gene regulation networks as
follows:

dxmðtÞ ¼ AmðrðtÞÞxmðtÞdtþBðrðtÞÞgðxpðt�sðtÞÞÞdt

þSðrðtÞ,xmðt�tðtÞÞ,xpðtÞÞdoðtÞþH1ðrðtÞÞv1ðtÞdt,

dxpðtÞ ¼ ApðrðtÞÞxpðtÞdtþDðrðtÞÞxmðt�tðtÞÞdtþH2ðrðtÞÞv2ðtÞdt,

ymðtÞ ¼ CmðrðtÞÞxmðtÞþEmðrðtÞÞv1ðtÞ,

ypðtÞ ¼ CpðrðtÞÞxpðtÞþEpðrðtÞÞv2ðtÞ,

zðtÞ ¼
zmðtÞ

zpðtÞ

" #
¼ ðtÞ

LmðrðtÞÞxmðtÞ

LpðrðtÞÞxpðtÞ

" #
ð6Þ

where ym(t), yp(t) represent the expression levels of mRNA and
protein of the ith node at time t, H1(r(t)),H2(r(t)) are input
matrices and v1(t),v2(t) are input disturbances which belongs to
L2[0,N), o(t) is scalar Brownian motion with zero mean value and
unit variance and z(t) is the concentration of intended genes or
proteins. r(t),tZ0 is a right-continuous Markov chain on the
probability space taking values in a finite state space S¼{1,2,y,w}
with generator P¼(pij)N�N given by:

P½rtþh ¼ i9rt ¼ j� ¼

(
pijhþoðhÞ ia j

1þpiihþoðhÞ otherwise

lim
h-0

oðhÞ
h ¼ 0, pijZ0, pii ¼�

P
ja ipij

8>>><
>>>:

ð7Þ

For simplicity in notation, we refer to r(t) with the i index. g(U) is a
vector function of g1(U),y,gn(U)’s in the following form:

gðUÞ ¼ ½ g1ðUÞ . . . gnðUÞ �
T ð8Þ

where all of gi(U)’s satisfy (4) for k¼k1,y,kn. Also define matrix K as:

K ¼ diagðk1,. . .,knÞ ð9Þ

S(U) is the nonlinear function describing noise intensity and
satisfies the following condition:

trace½Si
T
ðxmðt�tðtÞÞ,xpðtÞÞSiðxmðt�tðtÞÞ,xpðtÞÞ�

rxT
mðt�tðtÞÞO1ixmðt�tðtÞÞþxT

pðtÞO2ixpðtÞ ð10Þ

So, the Markovian jump GRN can be rewritten as:

dxmðtÞ ¼ AmixmðtÞdtþBigðxpðt�sðtÞÞÞdtþSiðxmðt�tðtÞÞ,xpðtÞÞdoðtÞ
þH1iv1ðtÞdt,

dxpðtÞ ¼ ApixpðtÞdtþDixmðt�tðtÞÞdtþH2iv2ðtÞdt,

ymðtÞ ¼ CmixmðtÞþEmiv1ðtÞ,
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