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a b s t r a c t

Various exponential-growing documents and images have become omnipresent in past decades, and it

is of vital importance to group them into clusters upon desired. Matrix factorization is exhibited to help

yield encouraging clustering results in previous works, whereas the data manifold structure, which

holds plentiful spatial model information, is not fully respected by most existing techniques. And kernel

learning is advantageous for unfolding nonlinear structure. Therefore, in this paper we propose a novel

clustering approach called Manifold Kernel Concept Factorization (MKCF) that incorporates the manifold

kernel learning in concept factorization, which encodes the local geometrical structure in the kernel

space. This method efficiently preserves the data semantic structure using graph Laplacian, and the

nonlinear manifold learning in the warped RKHS potentially reflects the underlying local geometry of

the data. Thus, the concepts consistent with the intrinsic manifold structure are well extracted, and this

greatly benefits aggregating documents and images within the same concept into the same cluster.

Extensive empirical studies demonstrate that MKCF owns the superiority of achieving the more

satisfactory clustering performance as well as deriving the better-represented lower data space.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Tremendous growths in the amount of text documents and
images have been receiving more and more attentions during the
last decade, especially in the data mining and information
retrieval community. Clustering is regarded as a fundamental
tool that has a broad range of applications in dealing with huge
volumes of text documents and various images [1–6]. For a given
data set, the task of clustering is to find good clusters, which
enables easy organization and navigation of the data corpus.
Roughly speaking, clustering methods can be categorized into
two mainstreams: agglomerative clustering and partitioning
approach. The former belongs to a bottom-up hierarchical type
and the latter decomposes the given corpus into disjoint clusters.
Both of them have been well studied and investigated in previous
literatures [7–10].

For clustering, matrix factorization based techniques have
attracted considerable interests from many researchers in this
field. With regard to these methods, each text document or image
in the corpus is often treated as a data point in the high
dimensional linear space. Clustering analysis aims to look for
similar data points and ensure them within the same cluster in
maximum degree. Intuitively, similar samples are more likely to
be grouped together than different ones, and this could be

attributed to the fact that characteristics shared by similar ones
in original data spaces are inherited by new representations in
lower dimensional spaces, which makes the clustering more
easily. There are particularly two popular matrix factorization
methods widely applied to clustering analysis, i.e., Non-negative
Matrix Factorization (NMF) [11,12] and Concept Factorization
(CF) [3]. Generally, regardless of NMF or CF, they only consider
using the global Euclidean geometry to find new basis vectors,
according to how the new data representation is generated.

Previous studies show that the learning performance can be
enhanced by taking advantage of the manifold geometry and the
locally invariant idea [13–15], it is very natural to involve them in
matrix factorization based techniques for clustering. It has been
shown that CF can be kernerlized in [3] and kernel learning is
helpful to discover nonlinear data structure, thus considering
manifold kernel learning is an ideal choice. Fundamentally moti-
vated by this, we present a novel clustering approach called
Manifold Kernel Concept Factorization (MKCF). The goal of this
algorithm is to extract the underlying concepts consistent with
the manifold geometrical structure in the data space. The central
idea is striving to incorporate the manifold kernel learning into
concept factorization, which enables capturing the local latent
semantic structure of the data [16,17]. This approach attempts to
preserve the geometrical structure using graph Laplacian, and the
nonlinear manifold learning in the warped RKHS essentially
reflects the underlying local geometry in the data space. Thus,
the concepts consistent with the intrinsic manifold structure are
well extracted, and this significantly facilitates clustering. Our
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empirical evaluations on two text document corpora and two
facial data sets suggest the proposed approach outperforms other
clustering methods in terms of accuracy and normalized mutual
information.

The rest of this paper is organized as follows. We provide a
brief review of some related methods in Section 2. And Section 3
is primarily devoted to presenting our Manifold Kernel Concept

Factorization approach as well as the detailed derivations. Experi-
mental results are reported in Section 4 with considerable
analysis and rigorous discussions. Lastly, Section 5 offers some
concluding remarks and exploring directions in the future work.

2. Related works

In this section, we primarily review some related approaches
to our research work, including some matrix factorization based
techniques and manifold learning methods.

Non-negative Matrix Factorization (NMF) is a widely accepted
matrix factorization method employed by many clustering and
classification applications. It has been shown that NMF is able to
obtain a parts-based representation since it only allows additive,
not subtractive, combinations, which is in accordance with the
psychological and physiological evidence for parts-based repre-
sentation in human brain [11]. The non-negative constraints are
enforced on the cluster centers results. As a result, NMF can only
be performed in the original space but fails to work in the
kernelized space, e.g., Reproducing Kernel Hilbert Space (RKHS).
Xu et al. [12] propose one clustering method based on non-
negative matrix factorization, where each axis captures the base
topic of a particular document cluster and each document is
represented as an additive combination of the base topics. They
also put forward the other clustering method based on concept
factorization in [3], which differs from NMF in that it can be
applied to data containing negative values and be implemented in
the kernel space. CF mainly strives to address the limitations and
meanwhile inherits all the strengths of NMF, such as better
semantic interpretation and easily derived clustering results.
With this method, each concept or component is modeled as a
linear combination of the data points while each data point
consists of a linear combination of the concepts. It acquires the
non-negative linear coefficients through minimizing the recon-
struction error of the data points and derives the cluster label of
each data point easily from these gained coefficients. Regarding
NMF and CF, there exist many invariants and extensions [18,7,8].
In general, CF is more advantageous than NMF, because of its
merits that it can be applied to any data points taking both
positive and negative values. Recently, graph Laplacian which
plays a role in regularizing the objective function is employed in
[18]. Differently, we consider the manifold learning in the warped
RKHS so that some nonlinear data structure could be well
captured. Besides, there are two important parameters to be
adjusted in [18] but only one for our method. In [8], the idea of
locality preserving projection is merged into non-negative matrix
factorization, which uses the KL-divergence to evaluate the
similarity on the hidden topics. Ding et al. [19] give an orthogonal
non-negative matrix factorization based clustering method since
the orthogonal constraints leads to the more rigorous clustering
interpretation.

Many researches have paid their attention on the case that the
data is drawn from sampling a probability distribution, which
supports on or near to a submanifold of the ambient Euclidean
space [13,14,20]. Here, a submanifold with d dimensions is referred
to a subset of a m-dimensional Euclidean space. Actually, it has
somewhat difficulty filling the human generated text documents
uniformly in high dimensional Euclidean spaces, which inspires us

to consider the intrinsic manifold structure while obtaining the new
lower data representations. In order to explore the underlying
manifold geometry, there are many existing methods regarding
manifold learning, such as Laplacian Eigenmap [13], Locally Preser-
ving Projection [21] and Locally Linear Embedding [20]. One
common feature shared by these algorithms is that the nearby
points tend to have the similar labels, which is called local

invariance [22]. Up to now, manifold learning methods have gained
wide spread acceptance and achieved huge success in various kinds
of applications [16,7,23,24,9]. In [16], active learning is performed
in the manifold kernel space, and the most representative and
informative data points are selected by minimizing the expected
error. In [7], the graph structure is considered as a regularizer in
non-negative matrix factorization, which makes the objective
function and optimization process more complex. Different from
the above methods, Yang et al. [24] employ local regression models
to capture the manifold structure and impose a global regression
regularized term to learn a model for out-of-sample data extra-
polation. Additionally for image clustering, Yang et al. [4] propose a
novel image clustering method, which learns a new Laplacian
matrix by exploiting both manifold structure and local discriminant
information.

3. Manifold Kernel Concept Factorization

This section is mainly devoted to our proposed method called
Manifold Kernel Concept Factorization (MKCF). First, we simply
describe the fundamental methods NMF and CF. Then the deriva-
tion of manifold adaptive kernel is given with the objective
function. Third, we present the multiplicative update rules that
consider both the positive and negative values for our approach.
In addition, the complete MKCF algorithm and rigorous analysis
on our method are provided in the end.

3.1. Review of NMF and CF

Given a non-negative matrix X¼ ½x1, . . . ,xn�ARm�n, and each
data vector is placed in one column. Suppose that a data corpus
consists of p clusters with each of them corresponding to one
coherent concepts, NMF aims to find two non-negative coefficient
matrices UARm�p and VARn�p. Its cost function is defined by
minimizing the least squares error, shown as

JNMF ¼
1
2JX�UVTJ2, ð1Þ

where the matrix Frobenius norm J � J denotes the squared sum of
all elements within the matrix. By this means, it easily derives an
approximate factorization X�UVT , which is virtually a com-
pressed approximation of the original matrix since p is usually
much smaller than n and m, leading to a sparse encoding of the
data. This cost function is non-convex in both variables U and V
together but convex in an individual variable. Consequently,
searching the global minima of this function is an impractical
problem. The multiplicative update algorithm is expected to be an
ideal solution [25], which states that JNMF is non-increasing and
convergent under these update rules. Each column vector of X is
an approximately linear and additive combination of the corre-
sponding columns in U with the components in V as the weights.

Concept Factorization (CF) is developed on the basis of
NMF [3]. Each concept as a linear combination of the entire data
points allows the formulated computation in the kernelized
space. Let rk be the center of the concept k, where k¼ 1, . . . ,p,
then we have rk ¼

Pn
j ¼ 1 xjwjk. On the other hand, each data point

can be approximated by a linear combination of all concepts, i.e.,
xj ¼

Pp
k ¼ 1 rkvjk, where the non-negative weight wjk represents

the association degree of the data point xj and the concept k. The
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