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a b s t r a c t

We tackle the sequence tagging problemwhere the multiple output labels to be predicted are correlated
with one another in a complex manner. Due to the ability of capturing statistical dependency in the
output variables, the structured models like conditional random fields (CRFs) have received significant
attention recently. For computational issues, however, the CRF typically assumes rather simple restricted
dependency structures like chains, which can limit its prediction performance considerably when the
true data generation processes do not match with the model assumption. In this paper we propose novel
algorithms to learn an ensemble of predictor models to boost the overall prediction accuracy. By looking
at the frame-wise predictor inferred from a structured CRF model as a weak classifier, the ensemble learning
can be formulated within the (functional gradient) boosting framework. Similar to the conventional single-
output boosting algorithms, our methods produce the frame-wise importance weights on training data at
each stage that gives crucial guidance of which output variables to focus on more (and which less) in
learning the next-stage CRF model. The stage-wise learning reduces to the weighted frame-wise conditional
likelihood maximization, which can be done as fast as the conventional CRF learning. Our approaches differ
from the ordinary single-output boosting in that the base predictors are not learned independently across
different frames, yet they are derived from the same structural CRF model, hence tightly clamped with each
other to impose overall smoothness and consistency constraints. We demonstrate the improved prediction
accuracy on several sequence tagging problems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we deal with the sequence tagging problem aimed
for accurate prediction of the multiple output class labels that are
correlated with one another in a complex manner. Typically, the
output variables exhibit temporal dependencies, where the related
important application problems include motion sequence segmenta-
tion, theme-based video annotation, facial emotion estimation in
video, part of speech tagging or parsing of natural language sen-
tences, and protein secondary structure prediction, to name just a
few.

To capture the complex statistical correlation between the output
variables, the discriminative structured models like conditional
random field (CRF) emerged in the last decade, and have become
the major computational tools for accurate structured output pre-
diction [1–7]. The predictive power of the CRF originates from its
ability to capture the statistical dependency of output variables via
conditional probabilistic modeling. Although there exist other

probabilistic approaches like the popular hidden Markov model
(HMM), the HMM is a generative model that represents the joint
distribution of input and output. If the predictive performance is the
main concern, the conditional models like CRFs can circumvent the
difficult modeling effort for the input distribution, and focus solely on
capturing the impacts of inputs on outputs, resulting in higher
prediction accuracies than generative models [8,9,1,3].

Even though it has achieved great success in many related
fields, the CRF model typically assumes, mainly due to computa-
tional reasons, rather simple restricted dependency structures like
chains, which can limit its prediction performance considerably
especially when the true data generation processes do not match
with the underlying model assumption. While there have been
other attempts to enlarge the model representational capacity by
incorporating latent variables into the CRF [4,10,11], they intro-
duce additional computational complexity in the probabilistic
inference, also suffering from local optima issues.

In this paper we consider to build more accurate structured
output classifiers without introducing further computational over-
head. The main idea is motivated from the general ensemble/
boosting paradigm: the weak predictors that are inferred from the
CRF with a simple chain structure can be combined together in a
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principled manner to lead to a much stronger classifier. In our
case, the frame-wise classifier, which predicts each output variable
yt at each frame t in the sequence, is considered to be augmented/
boosted to yield a powerful ensemble prediction model. Note
however that the frame-wise predictors across different frames
are all clamped to one other within the same structured model
(CRF) to impose the smoothness and consistency constraints on
the entire output labels.

How to form an ensemble model from the base predictors is
the main theme of the paper. We propose two greedy algorithms
based on the functional gradient boosting framework. The first
strategy is to build a probabilistic mixture model for the frame-
wise output distributions. We provide a stage-wise predictor
selection scheme that maximizes the conditional class likelihood
objective functional in a greedy fashion. The second is to adopt the
logit classifier as a base predictor, where we minimize the
exponential loss (a smooth approximation of the 0/1 loss) incurred
by the addition of the base predictor. In both strategies, we use the
steepest gradient search in function space to derive how a newly
added predictor can be learned.

Similar to the conventional single-output boosting algorithms
(e.g., [12]), the proposed methods produce the frame-wise impor-
tance weights on training data at each stage, which gives crucial
guidance of which output frames to focus on more (and which
less) in learning the next-stage CRF model. Interestingly, the
proposed data weighting schemes are intuitively appealing by
assigning higher weights on the misclassified frames, and vice
versa. In computational aspects, the stage-wise learning reduces to
the weighted frame-wise posterior likelihood maximization,
which can be done as fast as the conventional CRF learning.

It should be noted that our approaches differ from the ordinary
single-output boosting in that the base predictors are not learned
independently across different frames, yet they are derived from
the same structural CRF model. Hence the frame-wise predictors
at each stage are coupled with one another within the same CRF,
which can yield predicted results that are smooth over the
sequence in a temporal sense. Thus, unlike building a set of
independent predictors one for each of multiple outputs, we do
consider the overall performance on the structured data; not
merely focusing on improving the accuracy at a single frame, but
for all outputs.

The paper is organized as follows: After briefly describing the
formal problem setup and introducing notations, we give some
background on CRF with several recent CRF learning methods in
Section 2. The proposed ensemble learning algorithms are dis-
cussed in Section 3 while in the Appendix, the detailed derivations
for the weighted frame-wise conditional likelihood maximization
estimator used for learning stage-wise CRFs are described. In
Section 4 we demonstrate the improved prediction accuracy
achieved by two ensemble approaches on several important
sequence tagging problems.

1.1. Problem setup and notations

We denote the output random variables in sequence by bold-
faced Y, comprised individual variables yt at frames t ¼ 1;…; T (i.e.,
Y¼ y1⋯yT ). Each output variable is discrete-valued, taking one of
the K different class labels, that is, ytAf1;…;Kg. The predictor
variables or the observation features are denoted by X that admit a
similar sequence structure as the output Y. Specifically X¼ x1⋯xT ,
and the feature vector at each frame xt is assumed to be a p-variate
vector. Notice that we do not assume that the sequence length T is
fixed, but can vary from instance to instance.

We exemplify two popular applications of the sequence tag-
ging, the automatic speech recognition and the facial emotion
tagging in video. In the former, one aims to predict the trans-

cript sequence Y¼ y1…yT from the input sequence, X¼ x1…xT

comprised certain features extracted from speech signals.
The predicted tag yt indicates the uttered word (out of K words)
that corresponds to the speech feature xt at time t. In the latter,
given a sequence of input features X (e.g., xt contains certain
image features extracted from the t-th video frame), the goal
is to accurately predict the emotion intensity level (say, ytA
fNeutral;Increasing;Apexg) for each frame t.

In this paper we consider the sequence tagging problem within
the supervised learning setup: one is given a dyadic set of training
data, D¼ fðXi;YiÞgni ¼ 1, n i.i.d. samples from an underlying but
unknown distribution PðX;YÞ. Our goal is to learn an accurate
structured prediction function Y¼ hðXÞ. Among several machine
learning approaches, the conditional random field (CRF) aims to
represent the probabilistic conditional distribution PðYjXÞ to
account for the complex statistical dependency among the input/
output variables. Then the predictor can be determined from the
model by statistical inference, hðXÞ ¼ arg maxYPðYjXÞ. In the next
section we briefly review the CRF, then our ensemble CRF learning
approaches are proposed in the subsequent section.

2. Background on CRF

The conditional random field aims to represent the conditional
distribution PðYjXÞ as the Gibbs form:

PðYjX; θÞ ¼ esðX;Y;θÞ

ZðX; θÞ where ZðX; θÞ ¼ ∑
YAY

esðX;Y;θÞ: ð1Þ

The denominator ZðX; θÞ is a normalizer (often called the partition
function) to enforce a distribution. Here we use Y to denote a set of
all possible output sequence realizations. The relationship
between input and output variables are encoded in the score
function sðX;YÞ, where one typical way to form it is via (general-
ized) log-linear modeling:

sðX;Y; θÞ ¼ θ> �ΨðX;YÞ: ð2Þ
That is, the score is defined as the inner product between the
model parameters θ and the joint feature vector ΨðX;YÞ. The latter
is also referred to as the sufficient statistics of the log-linear model.
One can interpret the score as the negative energy that assigns
higher values to more likely configurations, and vice versa.

Indeed, it is the joint feature vector ΨðX;YÞ that determines the
model's dependency structure on the input/output variables. The
conditional distribution PðYjXÞ can be factorized into smaller
terms according to the dependency structure we define in the
feature function. More specifically, when we let C be the set of all
cliques in the output graph (variables within the clique roughly
indicate inter-dependencies among the variables, cf., the Ham-
mersley–Clifford theorem [13]), one defines the score function
as sðX;Y; θÞ ¼∑cACθ>

c �ΨcðX;YcÞ where Yc indicates the output
variables confined to the clique cAC (similarly for θc and Ψc).
This results in the factorized distribution PðYjX; θÞp∏cAC
expðθ>

c �ΨcðX;YcÞÞ.
Accordingly, how we design the output graph structure

G¼ ðV ; EÞ (e.g., cliques), significantly affects model's representa-
tional capacity. Generally, the more complex the graph structure is,
one can have the richer distribution family, however, at the
expense of higher complexity for accurate inference within the
model. For tractable inference, the most widely used graph
structure is the simple chain, for which the cliques are confined
to the two adjacent variables yt and yt�1.

For the chain-structure models, cliques are restricted to be
pairwise, and we group them into two different types: node
cliques and edge cliques. The node features are denoted by
ΨðVÞ

t ðX; ytÞ and the edge features by ΨðEÞ
t ðX; yt ; yt�1Þ. We also split

M. Kim / Neurocomputing 150 (2015) 449–457450



Download English Version:

https://daneshyari.com/en/article/407537

Download Persian Version:

https://daneshyari.com/article/407537

Daneshyari.com

https://daneshyari.com/en/article/407537
https://daneshyari.com/article/407537
https://daneshyari.com

