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a b s t r a c t

Image based burning state recognition plays an important role in sintering process control of rotary

kiln. Although many efforts on dealing with this problem have been made over the past years, the

recognition performance cannot be satisfactory due to the disturbance from smoke and dust inside the

kiln. This work aims to develop a reliable burning state recognition system using extreme learning

machines with heterogeneous features. The recorded flame images are firstly represented by various

low-level features, which characterize the distribution of the temperature field and the flame color, the

local and global configurations. To learn the merits of our proposed flame image-based burning state

recognition system, four learner models (ELM, MLP, PNN and SVM) are examined by a typical flame

image database with 482 images. Simulation results demonstrate that the heterogeneous features

based ELM classifiers outperform other classifiers in terms of both recognition accuracy and computa-

tional complexity.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Rotary kiln, as a large-scale sintering facility, is widely used in
metallurgical, cement, chemical, and environment protection
industries. The main control objective of the rotary kiln sintering
process is to achieve consistent product quality, which is often
referred to as the key performance index. However, practically,
the measurement of the product quality index is done by manual
sampling with 1-h period. Therefore, indirect control is employed
to replace online control, i.e. keeping key process parameters that
can be measured online and are closely related to the product
quality index into their preset ranges means satisfied product
quality index. Based on the analysis of rotary kiln mechanism
process, the fact that burning zone temperature directly deter-
mines the characteristics of the clinker is widely acknowledged.
Thus, the accurate measurement for such temperature is the most
critical issue for the rotary kiln sintering control process [1–3].
However, due to the harsh environment inside the kiln, the
accurate measurement through thermocouple is still a challen-
ging task. Recently, we have developed and implemented a hybrid
control system in No. 3 rotary kiln at Shanxi Aluminum Corp. [4].
In such system, burning state is recognized based on the

clustering of temperatures from the non-contact colorimetric
measuring device.

Because of the rich and reliable visual information, for opera-
tors, burning zone flame image is considered to be more reliable
than the burning zone temperature to estimate the burning state.
Flame image-based state recognition has already been studied in
the past, where a flame image is first segmented into regions of
interest (ROIs), features for the representation of the color and
configuration characteristics of these regions are then extracted,
burning state recognition is performed based on the features
extracted [5–7]. However, due to the poor image quality caused
by smoke and dust inside the kiln, accurate segmentation of ROIs
is quite challenging and therefore unreliable. This will in turn
result in inaccurate feature extraction and poor state recognition.
To avoid the above problems, we have tried to extract features to
represent the color and configuration characteristics of ROIs of
flame image without segmentation, with the goal of improving
the burning state recognition.

From operators point of view, more discriminable ROIs will
facilitate the subsequent feature extraction and burning state
recognition. Motivated by the knowledge that flame and material
zones are with distinct texture characteristics, Gabor filter is
employed as a pre-processing step to discriminate them [8].
Practically, its parameters are often set by trial and error. How-
ever, we believe most of a filter bank offer little improvement to
(or even reduce) the discriminative power due to the peaking
phenomenon [9]. Hence, we propose to incorporate Mahalanobis
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measure [10] and forward selection technique [9] to automati-
cally generate a compact Gabor filter bank to enhance the
separability of ROIs to facilitate the sequel.

Flame color indicates the combustion region and the distribu-
tion of the temperature field, and hence exhibits an intuitive
impression for the burning state. Appropriate flame region with
similar color corresponds normal burning state. Unlike other
flame image analysis methods that track the turbulent flame in
the image space to extract features to represent the flame color,
the multivariate image analysis (MIA) technique [11] shows its
efficiency to feature the flame color without the difficult locating
flame step. MIA lies in projecting image pixels with similar color
in a common region of the score space independently of their
spatial location, and retrieving the locations of pixels with similar
color in the image space after detecting feature in the score space.
Such extracted feature will be used to represent the flame color.

The configuration of ROIs characterizes the heat source, dis-
turbance from smoke and dust, and clinker sintering status.
Especially, the configuration of the flame zone and the height of
the material zone are the key factors to recognize the burning
state [5,6]. Flame zone with good circularity and appropriate
material height mean normal burning state. Due to the difficult
segmentation of ROIs, instead, global features are firstly extracted
to represent the global configuration of the flame image. Eigen-
flame images are obtained using principal component analysis
(PCA), and global features are then produced by correlating each
flame image with the eigen-flame images to represent the global
configuration. Unlike traditional selection criterion for eigen-images
[12], a new selection procedure is used, with the goal of selecting
global features that possess the maximum discriminative power.

Generally, local configuration is considered to contain more
valuable details to complement the global configuration. Scale
invariant feature transform (SIFT) operator [13] is hence
employed to extract key points of flame image to avoid the
segmentation. The dimension of a SIFT descriptor is 1�128.
Exploring research in image and text retrieval, ‘‘bag of visual
words’’ (BoVW) [14] and term frequency-inverse document fre-
quency weight [15] are applied to vector quantize the descriptors
into clusters and form a visual word-image table to reduce feature
representation dimension. For such table, latent semantic analysis
(LSA) [16] is used to map such visual word-image space to a latent
semantic space by taking advantage of some implicit higher-order
structure in associations of visual words with images to mitigate
potential zero-frequency problem and reduce feature dimension
further [17]. Now, semantic vector as local feature conceptually
represents the local configuration. Previously, semantics are
explicitly assumed to have same saliency. In our work, a new
semantic selection procedure is introduced in order to consider
the saliency of semantics to select local features with maximum
discriminative power.

To imitate the fact that the integration of multi-feature is used
to estimate the final burning state, the above individual features
are concatenate and normalized, and a single-hidden-layer feed
forward neural networks (SLFNs) classifier with extreme learning
machine (ELM) algorithm [18] is employed to recognize the
burning state. Different from conventional learning algorithms
for neural networks, with randomly chosen input weights and
hidden bias and calculated output weights, ELM not only trains
much faster with higher generalization ability, but also over-
comes many issues faced by gradient-based algorithms such as
stopping criteria, learning rate, learning epochs, and local minima.
Many types of hidden nodes including additive/RBF hidden nodes,
multiplicative nodes, and non-neural alike nodes, can be used as
long as they are piecewise nonlinear. Readers may refer to a
recent survey paper for more details on ELM [19]. In ELM, since
different hidden node parameters correspond to different

classification performance, the selection of the hidden node
number is the most critical issue. Recently, due to the universal
approximation capability, the minimum training error and weight
norm, diverse modification for ELM has been successfully applied
to many classification problems [20] but has never been used in
flame image recognition before. The advantages of our new flame
image-based burning state recognition method are fourfold.
Firstly, our new method is computationally more efficient and
more accurate and robust than the image segmentation-based
and temperature-based methods. Secondly, MIA is effective to
feature the flame color to avoid the difficult flame tracking.
Thirdly, eigen-flame image-based method is feasible to feature
the global configuration to avoid the difficult segmentation.
Fourthly, without segmentation, local configuration is effectively
featured by semantic vector. Numerous experimental studies
show that, with feasible ELM classifier, our new method outper-
forms the image segmentation-based methods and temperature-
based method. As we can expect, more consistent product quality
index can be achieved if the new burning state recognition
method is incorporated into our previously developed hybrid
control system.

The rest of the paper is organized as follows. The rotary kiln
sintering process and weaknesses of previous burning state
recognition methods are presented in Section 2. Section 3 gives
our new flame image multi-feature-based burning state recogni-
tion method. Experimental studies, conclusions and future work
are given in Sections 4 and 5 respectively.

2. Rotary kiln sintering process and previous burning state
recognition methods

2.1. Rotary kiln sintering process

A schematic diagram of the rotary kiln sintering process is
shown in Fig. 1, where raw material slurry is sprayed into the
rotary kiln the upper end, i.e. kiln tail. At the lower end, i.e. kiln
head, coal powders from the coal feeder and primary air from the
air blower are mixed into a bi-phase fuel flow and then are
sprayed into the kiln head hood and combust with secondary air
from the cooler. The heated gas is brought to the kiln tail by the
induced draft fan, while the material moves to the kiln head by
the rotation of kiln and its gravity, in counter direction of the gas
flow. After the material passes through drying zone, pre-heating
zone, decomposing zone, burning zone, and cooling zone in
sequence, the final product of the sintering process of rotary kiln,
namely clinker, is generated and is fed downstream for further
processing [21]. Taking alumina sintering process for instance,
during burning zone, with 1200–1300 1C, the following chemical
reaction arises [21]:

Na2O � Al2O3 � 2SiO2þ4CaO-Na2O � Al2O3þ2ð2CaO � SiO2Þ ð1Þ
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Fig. 1. Schematic diagram of rotary kiln sintering process.
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