
KCMAC-BYY: Kernel CMAC using Bayesian Ying–Yang learning

K. Tian a, B. Guo b,n, G. Liu c, I. Mitchell d, D. Cheng b, W. Zhao b

a School of Automation, Harbin Engineering University, Harbin, China
b School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin China
c School of Computer Engineering, Nanyang Technological University, Singapore
d School of Engineering and Information Sciences, Middlesex University, London NW4 4BT, UK

a r t i c l e i n f o

Article history:

Received 23 November 2011

Received in revised form

7 May 2012

Accepted 20 June 2012

Communicated by L. Xu
Available online 6 September 2012

Keywords:

Bayesian Ying–Yang learning

CMAC

Kernel machine

a b s t r a c t

The Cerebellar Model Articulation Controller (CMAC) possesses attractive properties of fast learning and simple

computation. In application, the size of its association vector is always reduced to economize the memory

requirement, greatly constraining its modeling capability. The kernel CMAC (KMAC), which provides an

interpretation for the traditional CMAC from the kernel viewpoint, not only strengthens the modeling

capability without increasing its complexity, but reinforces its generalization with the help of a regularization

term. However, the KCMAC suffers from the problem of selecting its hyperparameter. In this paper, the

Bayesian Ying–Yang (BYY) learning theory is incorporated into KCMAC, referred to as KCMAC-BYY, to optimize

the hyperparameter. The proposed KCMAC-BYY achieves the systematic tuning of the hyperparameter, further

improving the performance in modeling and generalization. The experimental results on some benchmark

datasets show the prior performance of the proposed KCMAC-BYY to the existing representative techniques.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Cerebellar Model Articulation Controller (CMAC) [1,2] is a type
of neural network based on a model of the mammalian cerebellum.
Originally, the CMAC was proposed as a function modeler for robotic
controllers by James Albus in 1975, but it has been extensively used in
reinforcement learning and also as a classifier. As an associative
memory neural network model, the CMAC has some attractive fea-
tures of fast learning, simple computation, local generalization, and
the fact that it can be realized by specialized high-speed hardware [3].

The traditional CMAC applies a table-lookup technique and has
local generalization ability that depends on the overlap of the
association vectors [1,2]. In this technique, the input space of a CMAC
is divided into levels. Each level corresponds to a defined quantization
function, which is used to quantize the input space into discrete
states. Levels from different dimensions combine to structure a set of
overlays, the number of which is a key factor of modeling capability
of the CMAC. A specific association vector is obtained from every
input point using an ‘‘AND’’ operation in all overlays, which contains
binary elements, with 1 indicating excitation and 0 no excitation. This
action is also interpreted as the first primary mapping of a CMAC,
which projects from the input space into association space. The
second primary mapping calculates the output of a CMAC as a scalar
product of the association vector and corresponding weight vector.
The learning mechanism adopted in a CMAC network is based on
error correction. For each training data point, the error between

output of a CMAC and the desired response is computed and the
weight vector is adjusted accordingly.

Practically, a crucial problem always constrains the application
of a CMAC: the memory requirement grows exponentially with
respect to the input dimension. In order to reduce the complexity
of a CMAC, Albus introduced hash coding into his model [1]. This
approach effectively reduces the size of memory, but it can result
in collisions of the mapped weights and bring certain adverse
impacts to the convergence of learning. Another method of
decomposing a multivariate case into a group of lower dimen-
sional ones is also widely used to reduce complexity in CMAC
research [4–7]. The authors in [6] introduced a hierarchical
architecture CMAC (HCMAC), which is a multilayer network with
log2

N layers. In each layer, a two-dimensional elementary CMAC
is constructed using finite support Gaussian basis functions.
Similarly, in [7] another multilayer architecture, macro structure
CMAC (MS-CMAC), the one-dimensional elementary CMAC is
applied. Although all the above mentioned architectures are less
complex compared to the traditional CMAC, they are time con-
suming in the training process. For example, experimental results
on the Iris data including 75 patterns demonstrated that the
training time required for traditional CMAC is 0.0186 s, while that
for HCMAC and S-OHCMAC are 2.604 and 0.115 s, respectively [6].

Interpreting a CMAC as a type of kernel machine, the Kernel
Cerebellar Model Articulation Controller (KCMAC) can reduce the
complexity of a CMAC and strengthen its modeling capability remark-
ably [8]. Specifically, the association space in the KCMAC is treated as
the feature space in the kernel machine. Additionally, the binary basis
functions can be regarded as first-order B-spline functions [9] of fixed
positions, so higher-order B-spline kernel functions can be designed to

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.neucom.2012.06.028

n Corresponding author.

E-mail address: guoben@hit.edu.cn (B. Guo).

Neurocomputing 101 (2013) 24–31

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2012.06.028
dx.doi.org/10.1016/j.neucom.2012.06.028
dx.doi.org/10.1016/j.neucom.2012.06.028
mailto:guoben@hit.edu.cn
dx.doi.org/10.1016/j.neucom.2012.06.028


replace the binary basis functions of the CMAC. Due to the kernel trick,
the dimension of the kernel space will not increase as the dimension
of input space increases. This means we can build a kernel version of
a multivariate CMAC without reducing the length of the associate
vector. Thus, given any training data set KCMAC can learn without
error that is independent of the dimension of the input data and,
in addition, there will be no significant difference between one-
dimensional and multi-dimensional cases.

In order to improve the modeling capability of the KCMAC, one
hyperparameter is introduced to penalize the miss-regression/classi-
fication. Such a hyperparameter must be optimized to adapt a specific
problem; however, it is always pre-defined based on empirical
knowledge in the original KCMAC. To address this problem, we
attempt to optimize the hyperparameter using Bayesian Ying–Yang
learning theory.

First proposed in [10] and developed for over a decade, Bayesian
Ying–Yang (BYY) learning provides a general framework that accom-
modates typical learning algorithms from a unified perspective and
improved model selection criteria. BYY learning consists of two
subcategories. One is featured with Ying–Yang best matching for
developing typical learning algorithms, which is considered in this
paper and also one major focus of Ref. [10,12],while the other is Ying–
Yang best harmony featured with its favorable nature for model
selection [11], for which readers are referred to Ref. [22,23]for recent
systematic reviews, and especially Fig. A2 of Ref. [22]and Section 4.2
of Ref. [23], for the relations between these two BYY learning
subcategories.

In [13,14], BYY has been successfully applied to the fuzzification
phase of the CMAC, which is further incorporated with an online
expectation–maximization (EM) algorithm to process time series data
[24]. However, the weight training phase is separated from the
fuzzification phase in all these models. In this paper, the KCMAC is
optimized by BYY and hereafter referred to as KCMAC-BYY, in which
the training data are regarded as the external observation, while the
connection weight vector is the inner representation. Based on these,
our proposed KCMAC-BYY achieves the systematic tuning of the
hyperparameter, and further improves the performance in modeling
capability and stability. The remainder of this paper is organized as
follows: Section 2 briefly describes KCMAC; Section 3 introduces a
probabilistic interpretation of KCMAC; Section 4 investigates para-
meter optimization using BYY; Section 5 includes the experiments,
results and analysis; and, finally, Section 6 is the conclusion.

2. Overview of the kernel CMAC

In terms of modeling capability, the lower dimensional CMACs
always provide much better performance than higher dimensional
ones. A detailed analysis of the reason for this phenomenon is given
here. In high-dimensional cases, considering that the memory
requirement of a CMAC grows exponentially with respect to the
input dimension, in implementation we usually have to reduce the
size of the association vector by decreasing the number of overlays
used. For example, in a 5-D CMAC with three levels in each of the
input dimensions, 35 potential overlays will be used in learning. In
order to save memory, CMAC only uses five overlays, in which the
overlay-representing points are in the main diagonal of the input
space. However, in lower dimensional cases a full overlay structure is
always used and hence the reason why they have better modeling
capabilities. To resolve the problem, a kernel version of a CMAC is
introduced, eliminating the difference between the lower and higher
dimensional CMACs [3,8] and strengthening the modeling capability
of the latter remarkably without increasing the model complexity.

In the KCMAC, the association space is treated as the feature space
of a kernel machine [9]. Considering that the binary basis functions
can be regarded as first-order B-spline functions of fixed positions,

the higher-order B-spline kernel functions can be designed artificially
to replace the binary basis functions of a CMAC. In the KCMAC a
structured mapping function (kernel function) is adopted, replacing
the ‘‘AND’’ operation of the traditional CMAC, to project the input data
into the feature space (association space). In addition to the tradi-
tional binary CMAC, this kernel interpretation can also be used in
higher order CMACs [16–18] with higher order basis functions.
A CMAC with the kth-order B-spline basis function corresponds to a
kernel machine with the 2kth-order B-spline kernels.

The weight vector w in the KCMAC is determined by the following
constrained optimization using a quadratic loss function [19]:

Min
w,e

Jðw,eÞ ¼
1

2
wT wþ

g
2

Xn

i ¼ 1

e2
i ð1Þ

Such that

zi ¼wTfðuiÞþei
g
2

ð2Þ

where g is the miss-regression penalty parameter of the model, ei is
the error of the ith input point, and ^(ui)¼a (ui) corresponds to the
mapping function in the kernel machine. Then the Lagrangian is
introduced

Lðw,e,aÞ ¼ Jðw,eÞ�
Xn

i ¼ 1

aiðw
TfðuiÞþei�ziÞ ð3Þ

where ai are the lagrange multipliers. These ai s are determined with
the following linear system:

a¼

"
Kþ

1

cI

#�1

z ð4Þ

where K¼AAT is the kernel matrix, and I is an n�n identity matrix.
The response of the network is

yðuÞ ¼fðuÞ
Xn

i ¼ 1

aifðuiÞ ¼
Xn

i ¼ 1

aiKðu,uiÞ ð5Þ

In addition, by adding a regularization term into Eqs. (1) and
(2), the KCMAC can be easily extended to a regularized version
which has a better generalization capability.

In the KCMAC, the modeling capability can be reinforced
greatly without increasing its complexity, but the hyperpara-
meter g, which is the miss-regression penalty parameter of the
model, is introduced into the model. In the original KCMAC, this
hyperparameter is usually determined empirically, while differ-
ent values of g will result in quite different performances.
To guarantee the modeling capability and stability, the BYY
learning is embedded into the KCMAC in this paper, as it is able
to systematically optimize g, and a novel KCMAC-BYY is proposed.

3. The kernel CMAC with the BYY learning

In the BYY supervised learning [12–14], there are three primary
elements: the inner representation w, the external observations u,
and the output action z. The u and z are known (visible), but the w is
unknown (invisible). All these elements are treated as random
variants, and the joint distribution p(u, z, w) can be calculated in
two ways

pyingðu,z,wÞ ¼ pðwÞpðu9wÞpðz9w,uÞ

pyangðu,z,wÞ ¼ pðuÞpðz9uÞpðw9u,zÞ

(
ð6Þ

Practically, the results of these two equations are always not
equal unless w is the optimal solution. Notice that u and w are
dialectical: in training u and z are known but w is unknown, and
w is obtained in terms of u and, while in testing or running, w is
known but u and are unknown, and w decides what u and are.
This interesting phenomenon fits well with the famous Chinese
ancient Ying–Yang philosophy.

K. Tian et al. / Neurocomputing 101 (2013) 24–31 25



Download English Version:

https://daneshyari.com/en/article/407577

Download Persian Version:

https://daneshyari.com/article/407577

Daneshyari.com

https://daneshyari.com/en/article/407577
https://daneshyari.com/article/407577
https://daneshyari.com

