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a b s t r a c t

This paper introduces Sphere Support Vector Machines (SVMs) as the new fast classification algorithm

based on combining a minimal enclosing ball approach, state of the art nearest point problem solvers

and probabilistic techniques. The blending of the three significantly speeds up the training phase of

SVMs and also attains practically the same accuracy as the other classification models over several large

real datasets within the strict validation frame of a double (nested) cross-validation. The results shown

are promoting SphereSVM as outstanding alternatives for handling large and ultra-large datasets in a

reasonable time without switching to various parallelization schemes for SVM algorithms recently

proposed.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Support Vector Machines are considered to be among the best
classification tools available today. Many experimental results
achieved on a variety of classification (and regression) tasks
complement the highly appreciated theoretical properties of
SVMs. However, there is one property of SVM learning algorithm
that has required, and still requires, special attention. This is the
fact that the learning phase of SVMs scales with the number of
training data points. The time complexity of the general purpose,
state-of-the-art SVM implementations is somewhere between
O(n) and Oðn2:3Þ. Hence, with an increase of datasets sizes, the
learning phase can be a quite slow process. Some successful
attempts to deal with this matter include the decomposition
approaches that have led to several efficient pieces of software,
the most popular being SVMlight [1] and LIBSVM [2]. However,
none of these algorithms obtained linear complexity, and the ever
increasing size of datasets has driven the SVMs training time
beyond acceptable limits. The two remedial avenues for over-
coming the issues of large datasets employed during the last
decade include various parallelization attempts (including the
newest GPU embedded implementations [3,4]) and the use of
geometric approaches. The latter include solving SVMs learning
problem by employing both convex hulls and enclosing ball
approaches [5,6]. The most recent and advanced method, known

as the Ball Vector Machines [7], has shown a high capacity for
handling large datasets.

The Sphere Support Vector Machine (SphereSVM) proposed
here combines the two techniques (convex hulls and enclosing
balls approaches). While keeping the level of accuracy, it achieves
a significant speedup with respect to all three L1 and L2 LIBSVM
and BallVMs.

Although the most popular SVM solvers (such as Platt’s SMO
[8]) are based on the Lagrange multipliers method and search for
solutions in the dual space, there is substantial research con-
ducted towards finding efficient algorithms that work directly in
the feature space. These algorithms are mostly based on the
geometric interpretation of the maximum margin classifiers.

The geometric properties of hard margin SVM classifiers have
been known for a long time [9]. Recently, Keerthi et al. [10] and
Franc [11] proposed algorithms based on the geometric inter-
pretation of the SVM algorithm for solving cases with separable
classes. Their approach treats the problem of finding the max-
imum margin between two classes as a problem of finding two
closest points belonging to convex polytopes covering the classes.
Crisp et al. analyzed the geometric properties of the n-SVM
algorithm [12] and, based on this work, Mavroforakis introduced
the reduced convex hulls (RCH) [13]. This idea allowed using a
geometric approach to solve SVM problems for overlapping
classes. Reduced convex hulls enabled a shrink of overlapping
convex polytopes covering each class. This reduction creates the
margin between two overlapping classes and permits separating
them (previously unfeasible with Keerthi’s or Franc’s algorithms).

Another field of research involves algorithms based on the
minimal enclosing ball (MEB) problem. Tsang et al. [5,14] formulated
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the SVM problem as the MEB problem and proposed Core Vector
Machines (CVM) algorithm as an approach suitable for very large
SVM training. Their algorithm is an application of Badoiu and
Clarkson’s work [15] that investigates the use of coresets in finding
an approximation of MEB. Additional speedup is obtained by using
the ‘‘probabilistic speedup’’ approach proposed by Smola and
Schölkopf [16]. CVM is further generalized [17] by allowing the use
of any kernel function (and not only the normalized ones as
previously required). Furthermore, Tsang et al. [7] have improved
the idea of Core Vector Machines by introducing a new algorithm not
requiring QP solver—Ball Vector Machines (BVM). Moreover, Asharaf
et al. [18] have proposed another extension of CVM that is capable of
handling multi-class problems.

In this paper, we propose a new algorithm that improves the
BVM by applying ideas previously used in SVM learning based on
RCH. The original SVM solver involving RCH was improved by
López et al. [19] by replacing the SK algorithm [20] that was used
in searching for the closest points with a faster MDM algorithm
introduced by Michell et al. in [21]. Our work, similar to López’s,
introduces an algorithm originating within an MDM solver as the
technique for finding an enclosing ball (EB) surrounding the data
points. This novel EB algorithm is successfully applied in solving
the EB problem that originates after transforming an original L2
SVM problem as the EB task.

2. Sphere Support Vector Machines

It has been shown in [5] that, for normalized kernels,1 the
learning setting of the L2 SVM, defined as

arg min
w,b,f,r
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can be rewritten as a minimization task equal to solving a
problem of the finding minimal enclosing ball

arg min
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in the feature space ~F defined by kernel
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where kij ¼jðxiÞ �jðxjÞ is the kernel used in the original L2 SVM
problem, dij is Kronecker’s delta, and ~xi ¼ ~jðxiÞ is the image of the
vector xi in the feature space ~F. In other words, solving the
minimal enclosing ball problem will also produce a solution of the
L2 SVMs task. This idea becomes the foundation of the CVM and
BVM algorithms introduced by Tsang, as well as the new
approach presented here.

The minimal enclosing ball problem solved by the CVM
algorithm was slightly simplified in the BVM approach. Specifi-
cally, Tsang found an accurate estimate of the radius of the
enclosing ball. Since the ball’s radius could be considered known,
the only unknown was the center of the ball. This way, the
minimal enclosing ball problem was replaced by an enclosing ball
problem. This approach turned out to be very effective and so we
decided to apply it to our algorithm. SphereSVM, like its

predecessor BVM, is not trying to minimize the radius of the
enclosing ball.

2.1. The algorithm

The SphereSVM algorithm is a novel reformulation of the BVM
approach. Therefore, some parts of both algorithms are similar.
For instance, the initialization procedure, the way the violating
vectors2 are found, and the stopping criterion are all the same.
However, there are important differences, the main one being the
way updates of the center are performed. In the case of a BVM
algorithm, all weights ai corresponding to vectors ~x i belonging to
the coreset are modified in each updating step. In the SphereSVM
algorithm proposed here, only two weights av and au are updated.
The first weight av corresponds to the vector that is furthest from
the ball center while the other weight au belongs to the support
vector closest to the center. According to the KKT conditions of
the MEB problem

aiðJc� ~x iJ
2
�R2
Þ ¼ 0, ð6Þ

if the condition aia0 holds then ~x i lies on the boundary of the
minimal enclosing ball. In other words, the vectors lying inside
the ball are not support vectors and do not affect the solution.
This observation leads to the conclusion that there are two types
of violators: the vectors lying outside the enclosing ball and the
vectors having nonzero weights that are lying inside the ball. The
SphereSVM algorithm aims at eliminating support vectors inside
the ball.

The simplified pseudo-code of the SphereSVM algorithm is
presented in Algorithm 1.

Algorithm 1. SphereSVM algorithm.

Require: eA ½0,1Þ {the parameter of the stopping criterion}
Require: Nr AZþ {the size of the random subset}
Require: NaAZþ {the number of draw attempts}

Ensure: c¼
Pm

i ¼ 1 ai ~x i {the approximation of the EB center}

1: a’0,a0’1
2: R̂’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ1þ 1

C

q
3: ê’ 1

2

4: repeat
5: ê’maxfê,eg
6: i’0
7: repeat
8: Xr’ random subset of X of size Nr

9: v’arg maxi: ~x i AXr4Jc� ~x iJ4 ð1þ êÞR̂
Jc� ~x iJ

10: i’iþ1
11: until va| or i4Na

12: if va| then
13: u’arg mini:ai 40Jc� ~xiJ

14: r¼ ð ~xv� ~xuÞ�ð ~xv�cÞ
J ~xv� ~xuJ

2

15:
b̂’r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� J ~xv�cJ2

�R̂
2

J ~xv� ~xuJ
2

r

16: b’minfb̂,aug

17: av’avþb
18: au’au�b
19: else
20: ê’ ê

2

1 Kernels satisfying condition kii ¼jðxiÞ �jðxiÞ ¼ t is constant, e.g. for a

Gaussian kernel kii ¼ 1.

2 Violating vectors are the data points that violate some predefined condi-

tions. In the case of the BVM algorithm, these are the vectors lying outside the

enclosing ball. In SphereSVM, there is also another type of violators, namely

vectors that do not satisfy KKT conditions (samples ~xi having non-zero weight ai

and not being on the surface of the enclosing ball).
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