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a b s t r a c t

Signals of interest (SOIs) extraction are a vital issue in the field of communication signal processing.

A promising approach is constrained independent component analysis (cICA). This paper extends the

conventional constrained independent component analysis framework to the case of complex-valued

mixing model and presents different prior information and different ways to be incorporated into the

cICA framework. Two examples are demonstrated, ICA with cyclostationary constraint (ICA-CC) and ICA

with spatial constraint (ICA-SC). The adaptive solution using the gradient ascent learning process is

derived to solve the new constrained optimization problem in the ICA-CC example, while the rough

spatial information corresponding to the direction of arrival (DOA) of the SOI can be utilized to select

the specific initial vector for the desired solution before the learning process in the ICA-SC example. The

corresponding experiment results show the efficacy and accuracy of the proposed algorithms.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In general, the goal of blind source separation (BSS) is to
recover all the source signals from mixed signals received by
sensors. The adjective ‘‘blind’’ emphasizes the fact that, the source
signals are not observed, and, no information is available about
the mixing situation. But, the assumption is often held physically
that the source signals are mutually independent. Recently, BSS in
signal processing has received considerable attention from
researchers, due to its numerous promising applications in the
areas of remote sensing, speech processing, medical diagnosis and
wireless communication. However, in many applications, it is
desired to extract only one signal of interest or a desired subset of
signals. For example, reception of wireless communication signals
becomes increasingly difficult as more and more users and types
of communication signals increasingly consume the available
spectra and therefore we wish to extract the SOIs from the
observed mixtures and automatically discard other uninteresting
source signals. Thus, it would be important to develop algorithms
to extract only the desired signals with given characteristics

instead of all sources. In such cases, the BSS problem reduces to
a blind signal extraction (BSE) problem, which we focus here.

Many BSE algorithms existing in the literature extract the SOI
as the first signal, by using some a priori information. In [1],
Barros and Cichocki proposed a fast and simple algorithm exploit-
ing the prior information about the time structure of the desired
signal, which requires the precise estimation of an optimal time
delay. Zhi-Lin Zhang and Zhang Yi extended the Barro’s work and
proposed an improved algorithm based on eigenvalue decom-
position [2], which is less sensitive to the errors of the time delay.
Tsalaile et al. [3] proposed a novel second-order-statistics-based
sequential extraction algorithm of quasi-periodic signals with time-
varying period, which diagonalizing autocorrelation matrices at lags
corresponding to the time-varying period. But most of the commu-
nication signals do not possess such characteristics. In array signal
processing area, the beamforming is a promising technique, which
covers specific cell sectors so that the signal of interest (SOI) can be
extracted while suppressing other signals. Traditional beamforming
techniques such as MVDR, LCMV [4] are based on the accurate
knowledge of the direction vector associated to the SOI and the
perfect array calibration, both of which are not often available in
practice. Another technique, called independent component analy-
sis (ICA), is perhaps the most widely applied to the BSS problem
[5–13]. Most existing ICA algorithms always extract independent
components (ICs) whose number is same as the number of the
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observed mixtures while the number of the SOIs is much less than
the observations. Once a spanning set is determined, the ICs of
interest must be identified and in general this is not a trivial task
and automation of this process is nontrivial. Moreover, such
methods involve redundant computation, require large memory
for estimating unnecessary signals and degrade the equality of the
signals recovered. Although some deflation algorithms such as
FastICA [8,9,12,13] were proposed to extract all the ICs one by
one, the signals can only be recovered up to scaling and permuta-
tion ambiguities due to the fact that the information of the mixing
matrix and the source signals are assumed to be completely blind
which cannot be circumvented without additional assumptions or
knowledge. Hiroshi et al. [14] combined ICA and time–frequency
masking to extract SOIs, which requires the target sources to have
dominant powers at some sensors. Furthermore, in complex-valued
BSE research, recent algorithms typically can be applied to both
circular and non-circular signals. In [15], Javidi et al. proposed a
class of linear predictability based algorithms for blind extraction
from noisy complex-valued mixtures and in [16], Javidi et al.
exploited higher-order statistics of latent sources to introduce a
new class of complex BSE algorithms suitable for the extraction of
both circular and non-circular signals.

Recently, Lu and Rajapakse proposed a new technique of con-
strained independent component analysis (cICA) [17,18], which
incorporates the a priori information about the desired signal as
the additional constraints into the conventional ICA learning process
and means that only a single statistically independent component
will be extracted for the given constraint. James et al. have applied
with great success the cICA method to artifact rejection in EEG/MEG
signal analysis [19]. Lee et al. [20] used the cICA method to the
extraction of fetal abdominal ECGs. However, the a priori informa-
tion in [18–20] is the reference signals (template signals) for each
desired signal, and the constraints are denoted by the correlation
measure between the recovered signals and their corresponding
reference signals, namely ICA-R. It incorporates the reference signals
to guide the separation process and extract the desired signals,
which are the closest one, in some sense, to the reference signals.
De-Shuang Huang et al. proposed a new version of cICA by dis-
cussing the characteristic for different closeness measurements [21].
Qiu-Hua Lin et al. [22] proposed a fast ICA-R algorithm by pre-
whitening and normalizing the weight vector. In practice, it is
difficult for us to accurately compensate time delay between the
recovered signal and the reference signal in order to make the phase
between them is closely matched, let alone that the reference
signals are not available in communication applications. James
et al. [23] proposed a modified FastICA algorithm, which exploited
the spatial topography of selected source sensor projections as the a
priori information. Nikolao Mitianoudis et al. [24] proposed a new
cICA method exploiting the smoothness constraint to extract the
smooth source signals with slowly varying temporal structures. In
fact, instead of constraining the domain of the source separation, the
a priori information can be incorporated in other ways e.g., by
expanding the cost function. Zhenwei Shi et al. [25] developed a new
extraction algorithm by combining the time–correlation property
into the ICA contrast function to extract the temporally correlated
signals such as fetal electrocardiogram. Most of the existing cICA
algorithms mentioned above used a ‘‘real-valued’’ instantaneous
mixing model (sources have different amplifications in different
mixtures). Nevertheless, in practical situations, for example, in
array signal processing for radio communications, the so-called
attenuation delay mixing model (sources have different amplifica-
tions and time delays in different mixtures) is more suitable, which
can be considered as complex-valued mixing model as stated in
Section 2.

Here, we extend the conventional cICA approach to a general
framework for the complex-valued case, and two examples

exploiting different additional information are illustrated. Our
main results are as follows:

� We give a rounded description of the cICA framework from
two aspects: different types of the a priori information and
their different ways of incorporation.
� The cICA method is notably extended to the case of complex-

valued mixing model including complex mixtures, mixing
matrix and source signals.
� We derive a new version of cICA algorithm exploiting cyclos-

tationary property of the SOI denoted by the absolute value of
the cyclic autocorrelation function, which is utilized as
inequality constraint to form a new constrained optimization
problem.
� Spatial constraint is utilized for the extraction of the desired

signal, which is denoted by the coarse knowledge about the
direction of arrival (DOA) of the desired signal and utilized to
obtain a specific initialization of the extracting vector.

The rest of the paper mainly consists of six sections. In Section 2
the attenuation delay mixing model is given, along with the assump-
tions and the notations. Section 3 describes the new cICA framework
and derives its learning rule. Section 4 derives two cICA algorithms
with cyclostationary constraint and spatial constraint respectively.
Section 5 demonstrates the performance of the proposed algorithm
with simulations, where the results are compared to that of the
FastICA algorithm and beamforming method, respectively. Finally
Section 6 provides the conclusions and discussion.

2. Problem formulation, assumption and notation

2.1. Notations

Conventional notation is used in this paper. Scalars, matrices
and vectors are represented by lower case, upper case and
boldface lower case letters, respectively. The ith component of
vector x is denoted by xi. The expectation operators E df g. AT, A*

and AH denote transpose, complex conjugate, and Hermitian
transpose of the matrix A, respectively. The identify matrix is
denoted by I. Furthermore, :d: represents the L2 norm of a vector
and sgnðdÞ is the sign function.

2.2. Problem formulation

In narrowband (NB) signal processing, the attenuation delay
mixing model is more suitable than the instantaneous mixing
model. Suppose N narrowband source signals impinge on M

sensors, the ith mixture xi(t) can be formulated as

xiðtÞ ¼
XN

k ¼ 1

bikskðt�tikÞ ð1Þ

where bik and tik are the attenuation coefficients and the propa-
gation time delays associated with the path from the kth source
signal to the ith sensor. According to the NB assumption, Eq. (1)
can be formulated as complex-valued form

xiðtÞ ¼
XN

k ¼ 1

bikskðtÞe
�j2pf ktik ð2Þ

Eq. (2) can be rewritten as the following matrix form:

xðtÞ ¼AsðtÞ ð3Þ

where sðtÞ ¼ s1ðtÞ,s2ðtÞ,. . .,sNðtÞ½ �
T
�CN�1 denotes the source signals

and xðtÞ ¼ x1ðtÞ,x2ðtÞ,. . .,xMðtÞ½ �T �CM�1 denotes the observation
vector, and A¼ a1,a2,. . .,aN½ �T �CM�N is the complex mixing matrix
whose kth column ak ¼ b1kej2pf kt1k ,. . .,bMkej2pf ktMk

� �T
is related to
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