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a b s t r a c t

Canonical correlation analysis (CCA) is invariant with regard to affine transformation, but it cannot be

directly applied to affine invariant pattern recognition. The reason mainly lies in that many existing

CCA-based schemes represent the pattern by matrix-to-vector method, as a result, the structure and

spatial information of the original pattern is discarded. In this paper, an affine invariant discriminate

analysis (AIDA) method is developed for pattern recognition. Dislike the matrix-to-vector representa-

tion, an object is first converted to a projection matrix by central projection transform (CPT). After a

point matching process, CCA is performed to projection matrices of the object and the model, and two

vectors will be derived. Therefore, the object is classified to a model by the smallest distance between

the obtained vectors. Comparisons of experimental results are given with respect to some existing

methods, which demonstrate the effectiveness of the proposed AIDA method.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Pattern recognition [1] is the study of how machines can
observe the environment, learn to distinguish patterns of interest
from their background, and make sound and reasonable decisions
about the categories of the patterns. A large number of methods
have been proposed to deal with various pattern recognition
tasks. Of the existing schemes, the statistical approach has
been most intensively investigated and applied in many real-life
situations. Principal component analysis (PCA) [2] and linear
discriminant analysis (LDA) [3] are two most representative
methods. Lots of new approaches, such as 2DPCA [4], exponential
discriminant analysis (EDA) [5] etc., have been proposed to
improve the performance of traditional methods.

Recently, a multivariate statistical analysis technique, canoni-
cal correlation analysis (CCA), arouses a great deal of interest
among researchers. CCA, proposed by Hotelling [6], measures
linear relationships between two multidimensional variables. It
finds base vectors (canonical factors) for two variables such that
the correlations between the projections of the variables onto
these canonical factors are mutually maximized. The directions of
canonical factors capture functional relations of the two variables.
Comparing with other two commonly used multivariate statisti-
cal analysis techniques, namely PCA and LDA, CCA not only

reduces the dimensionality of the original variables but also seeks
directions for two variables to maximize their correlations. There-
fore, it may be better suited for some recognition tasks. Many
promising results have been achieved based on CCA. Sun et al. [7]
apply CCA to feature fusion and image recognition for the first
time. They propose a feature fusion method which uses correla-
tion feature of two groups of feature as effective discriminant
information. Sun et al. propose locality preserving CCA [8] and
sample label-based CCA [9] methods, which greatly improve the
limitation of the original CCA.

Another property of CCA [10] is that it is invariant with regard
to affine transformation. Affine invariant pattern recognition,
extracting invariant features from the objects under affine trans-
formation, plays an important role in object recognition, and has
found successful applications in many fields. Many algorithms
have been developed for affine invariant pattern recognition. Of
the existing methods, wavelet descriptors [11], affine moment
invariants (AMIs) [12,13], and Multi-Scale Autoconvolution (MSA)
[14], etc. are some representative approaches. However, very few
attention has been paid on the affine invariant property of CCA.
The reason may lie in that almost every existing CCA-based
method, without exception, reshapes the original two dimen-
sional image into a vector. This matrix-to-vector operation leads
to two following problems in affine invariant pattern recognition:

� Firstly, the size of the image may be changed as a result of the
affine transformation. CCA cannot deal with vectors obtained
from images with different sizes. This problem can be overcome
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by normalizing the image into the same size, but this way may
effect the accuracy of the image.
� Secondly, the structure and spatial information of the image

matrix cannot be maintained in the vector. If the image is
modeled as a high-dimensional vector, it is very difficult to
yield a reliable and robust estimation of the underlying data
distribution. For example, we consider the following two
matrices and their vector representations:

0 1 0

4 5 2

0 3 0

2
64

3
75/½0 1 0 4 5 2 0 3 0�

and

0 2 0

1 5 3

0 4 0

2
64

3
75/½0 2 0 1 5 3 0 4 0�:

We can find that the two matrices are connected with a
rotation transformation by observing the data distribution in
the matrix. On the other hand, we cannot intuitively find the
relation between the two vectors. The relation of the two
vectors is not obvious as that represented in matrix form.

Therefore, CCA cannot directly be applied to affine invariant shape
recognition.

In this paper, an affine invariant discriminate analysis (AIDA)
method based on CCA and central projection transform (CPT) [15]
is proposed. Consisting of two stages, namely CPT and CCA, AIDA
can be formally regarded as following form: AIDA¼CPTþCCA. In
order to address the aforementioned problems, CPT and a point
matching process are carried out before CCA respectively. Using
CPT, any object can be projected to a closed curve, which
preserves the affine transformation and is called general contour
(GC) of the object, and the image is converted to a 2�N matrix
whose column vectors are the coordinate value of GC. As a result,
images with different sizes are transformed to the matrices with
the same sizes. And then a point matching process is carried out
to the obtained matrix to preserve the structure and spatial
information of the image. After that, CCA is employed to classify
objects under affine transformation. Several experiments have
been conducted to evaluate the performance of AIDA, and
satisfying results are obtained.

The rest of the paper is organized as follows: some prelimin-
aries are introduced in Section 2. In Section 3, the proposed AIDA
method is given. The experiments and results are shown in
Section 4. In the last section, some conclusions will be given.

2. Preliminaries

2.1. Affine transformation

Considering a parametric point XðtÞ ¼ ½xðtÞ,yðtÞ�0 with the para-
meter t of a region, then the affine transformation consists of a
linear transformation and translation as follows:

~xðtÞ ¼ a11xðtÞþa12yðtÞþb1,

~yðtÞ ¼ a21xðtÞþa22yðtÞþb2:

The above equations can be written with the following form:

~xðtÞ

~yðtÞ

" #
¼

a11 a12

a21 a22

" #
xðtÞ

yðtÞ

" #
þ

b1

b2

" #
¼ A

xðtÞ

yðtÞ

" #
þB, ð1Þ

where the non-singular matrix A represents the scaling, rotation,
skewing transformations and the vector B corresponds to the
translation.

2.2. CPT

In this subsection, the CPT method and its properties are
introduced. We have proposed CPT in [15], which can be con-
sidered as a sub-case of the Radon transform [16,17], and further
developed in [18,19] to extract rotation invariant features. The
affine invariant property of CPT is studied in this paper. In CPT, a
closed contour can be derived from the object by taking projec-
tion along lines from the centroid with different angles.

Suppose that an object in the 2D plane is represented by Iðx,yÞ.
To perform CPT, the Cartesian coordinate system should firstly be
converted to polar coordinate system. For achieving the transla-
tion invariance, the pole of polar coordinate system is taken at the
centroid of the object which can be computed from the first
geometric moments. Let f ðr,yÞ be the transformed image. After the
conversion of the system, the CPT is performed by computing the
following integral:

gðyÞ ¼
Z

f ðr,yÞ dr, ð2Þ

where yA ½0;2p�. ðgðyÞ,yÞ denotes a point in the plane of R2. Let y
goes from 0 to 2p, then the fðgðyÞ,yÞ9yA ½0;2p�g is a closed curve,
which is the GC of the object.

From a practical point of view, the images to be analyzed by a
recognition system are most often stored in discrete formats.
Catering to such two-dimensional discrimination patterns, we
should modify Eq. (2) into the following expressions:

gðynÞ ¼
XM�1

m ¼ 0

f ðrm,ynÞ dr, ð3Þ

where ynA ½0;2p�, n¼ 0;1,2, . . . ,N�1. M and N in Eq. (3) denote
the sampling intervals applied in the coordinate system conver-
sion produce.

Based on the GC, the original object can be converted to the
following 2�N matrix using coordinate conversion

gðy0Þ cos y0 gðy1Þ cos y1 � � � gðyN�1Þ cos yN�1

gðy0Þ sin y0 gðy1Þ siny1 � � � gðyN�1Þ sin yN�1

" #
: ð4Þ

This matrix is called the projection matrix of the object, whose
column vectors are the Cartesian coordinate values of the GC.

It can be proved that GC derived from the affine transformed
object is the same affine transformed version of GC derived from the
original object. For example, two images shown in Fig. 1(a) and (b)
are related by an affine transformation. The GCs of the them are
plotted in Fig. 1(c) and (d) respectively. From Fig. 1, we can observe
that the CPT method is able to keep the affine transformed informa-
tion. Besides, images with different sizes (see Fig. 1(a) and (b)) are
converted to GCs with the same length by CPT.

2.3. CCA

Considering two zero-mean random variables xARp and zARq,
CCA aims to find a pair of basis or projection vectors, ox and oz,
which maximize the correlation between the projections a¼oT

xx
and b¼oT

z z. More formally, the basis vectors can be formulated
as following:

ðox,ozÞ ¼ arg max
ox ,oz

E½ab�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½a2�E½b2

�

q ¼ arg max
ox ,oz

E½oT
xxz

Toz�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½oT

xxx
Tox�E½oT

z zz
Toz�

q

¼ arg max
ox ,oz

oT
xCxzozffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oT
xCxxoxoT

zCzzoz

q , ð5Þ

where CxxARp�p and CzzARq�q are the non-singular within-set
covariance matrices of x and y, while CxzARp�q denotes their
between-set covariance matrix.
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