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a b s t r a c t

An analog neural network architecture for support vector machine (SVM) learning is presented in this

letter, which is an improved version of a model proposed recently in the literature with additional

parameters. Compared with other models, this model has several merits. First, it can solve SVMs (in the

dual form) which may have multiple solutions. Second, the structure of the model enables a simple

circuit implementation. Third, the model converges faster than its predecessor as indicated by

empirical results.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Engineering applications of artificial intelligence often require
real-time solutions [1,2]. By employing artificial neural networks
based on analog circuits implementation, the computing proce-
dures are physically parallelled and distributed. After the pioneer-
ing work in this field by Hopfield and Tank [3,4], tremendous
interests have been aroused for designing neural networks with
analog circuits implementation in a variety of engineering appli-
cations (see [5–14] and references therein).

Support vector machines (SVMs) are widely used tools for
classification [15] and regression [16]. It can be modeled as a
quadratic programming (QP) problem, and therefore can be
solved by some recurrent neural networks capable of solving this
type of optimization problems, e.g., [17–20]. Specifically, [21]
presents a one-layer recurrent neural network and [22] presents a
simpler model in terms of circuits implementation. Both of the
two networks converge to steady-states corresponding to the
solutions of the SVMs under some conditions including:

� the Hessian of the objective function is positive definite; or
� the Hessian is positive semidefinite but the solution is unique.

In other words, the QP formulation has to be strictly convex,
which may not be the case in many applications (see Remark 1).
There exist some other networks which can potentially solve
SVMs without strict convexity assumption (e.g., [18–20]), but
none of them is as simple as the model in [22]. Then, is it possible
to design a neural network that has this nice property but is very
simple in structure?

In this letter, we present such a neural network for
SVM learning. It is actually a model in [20] with additional
parameters. Interestingly, this modification enables a very much
simpler circuits implementation, which is comparable to the
model in [22].

2. Architecture of the model

2.1. Preliminaries

Suppose that there are N training points for classification,
where each input ziARM is in one of the two classes yi ¼ þ1 and
yi ¼�1, i.e., the training data is ðzi; yiÞ for i¼ 1, . . . ,N. It is well-
known that the support vector machine (SVM) training problem
for classification can be formulated as a convex quadratic pro-
gramming (QP) problem [15]

min �
XN

i ¼ 1

aiþ
1

2

XN

i ¼ 1

XN

j ¼ 1

aiajqij

s:t:
XN

i ¼ 1

aiyi ¼ 0, 0rairh, 8i¼ 1, . . . ,N, ð1Þ
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where qij ¼ yiyjKijðzi,zjÞ and Kijðzi,zjÞ is the so-called kernel func-
tion which can take various forms, e.g., Kijðzi,zjÞ ¼ ðz

T
i zjþ1Þp with

p an integer. The kernel function must satisfy Mercer’s condition
and the N�N dimensional matrix Q ¼ fqijg must be positive
semidefinite, which implies that the problem is convex. The
parameter h40 is a user-defined constant to control the tradeoff
between the maximization of the margin and the minimization of
errors. The above problem is referred to as the dual formulation of
the SVM.

Remark 1. In many applications, Q may not be positive definite.

For instance, in linear SVM, Kij ¼ zT
i zj and Q can be written as AAT

where A¼ ðy1z1,y2z2, . . . ,yNzNÞ
T ARN�M . When N4M, which is

often the case in practice, rankðQ ÞoN and Q is positive semi-
definite only. For another instance, it is easy to show that when
there are repeated samples in the training set, Q is singular and
thus positive semidefinite only.

2.2. Existing models

In this subsection, we briefly review a few state-of-the-art
models for solving the SVM problem. A typical one-layer recur-
rent neural network is presented in [21] with the following
dynamic equations:

t _xi ¼�xiþP
XN

j ¼ 1

ð1�qijÞxj�yimþ1

0
@

1
A, 8i¼ 1, . . . ,N,

t _m ¼
XN

i ¼ 1

yixi, ð2Þ

where t40 is a time constant, P is a projection operator (activa-
tion function) defined as follows

PðxÞ ¼

0, xr0,

x, 0oxoh,

h, xZh,

8><
>:

and xi and m denote the states of the network, which are time-
varying. In fact, xi corresponds to the variable ai in (1). Circuit
implementation of this network follows the idea that each
operator in this model can be implemented by a circuit module,
e.g., an op-amp.

Another SVM network is presented in [22]. The dynamic
equations are as follows:

t _xi ¼ 1�
XN

j ¼ 1

qijaj�yimþdiðai�xiÞ, 8i¼ 1, . . . ,N,

t _m ¼
XN

i ¼ 1

yiai, ð3Þ

where di40 for all i¼ 1, . . . ,N, ai ¼ PðxiÞ and other notations are
the same as in (2). Note that, here it is ai instead of xi that
corresponds to the variables of (1). Similar to the network (2), this
network can be implemented by circuit modules, too. Its major
advantage over the network (2) is that if di ¼ 2þ

PN
j ¼ 1 9qij9, it can

be implemented by a very simple circuit, which takes advantage
of the nonlinear properties of op-amps.

In [20], a neural network was proposed for solving variational
inequalities and convex optimization problems. When tailored for
solving (1), it is governed by the following dynamic equations:

t _xi ¼ 1�
XN

j ¼ 1

ðqijþyiyjÞaj�yimþai�xi, 8i¼ 1, . . . ,N,

t _m ¼
XN

i ¼ 1

yiai, ð4Þ

where ai ¼ PðxiÞ.
In terms of performance, the network (4) is superior to (2) and

(3) because when the Hessian matrix Q is positive semidefinite,
only (4) can guarantee the global convergence to solutions of the
SVM (1). The other two require positive definiteness of Q, or
positive semidefiniteness of Q plus uniqueness of the solution.
Therefore, the neural network (4) has broader applications than
the other two. However, its structure is not as simple as (3). Note
that there exist other neural networks capable of solving positive
semidefinite SVMs (e.g., [18]), but their structures are not as
simple as (3) either.

2.3. A revised model

Let us revise the model (4) by adding a constant di40 for
i¼ 1, . . . ,N, then the dynamic equations for the revised model are

t _xi ¼ 1�
XN

j ¼ 1

ðqijþyiyjÞaj�yimþdiðai�xiÞ, 8i¼ 1, . . . ,N,

t _m ¼
XN

i ¼ 1

yiai, ð5Þ

where ai ¼ PðxiÞ.
If we set di ¼ 2þ

PN
j ¼ 1 9qijþyiyj9, there exists a very simple

circuit for realizing this model as shown in Fig. 1, where (a) shows
the block diagram and (b) shows the circuit realization scheme.
Note that only the _xi equation is shown in Fig. 1(b). Here we set Vs

slightly lower than VCC, then the equation governing this circuit is

R0C0 _ui ¼
VS

h
�
XN

j ¼ 1

ðqijþyiyjÞvj�yivmþ 2þ
XN

j ¼ 1

9qijþyiyj9

0
@

1
Aðvi�uiÞ,

where

vi ¼

0, uir0,

ui, 0ouioVs,

Vs, uiZVs,

8><
>:

which is determined by the saturation property of the op-amp.
Then vi, ui, vm and R0C0 correspond to ai, xi, m and t in (5),
respectively. For ensuring that the resistance R0=ðqijþyiyjÞ shown
in Fig. 1(b) is always positive, the absolute value of qijþyiyj is
used. So, if for some j, qijþyiyj is positive (negative), then the
corresponding input voltage to the op-amp should be vj (�vj).

In what follows, we will show that the additional constants di

does not affect the stability property of the network. The analysis
is followed by revising the proof for the network (4) presented
in [20].

3. Stability analysis

Let Sn
¼ fanARN9an solves (1)}. First, we rewrite (5) in the

vector form

t _x ¼Dða�xÞ�Qaþe�yðmþyTaÞ,

t _m ¼ yTa,

(
ð6Þ

where x¼ ðx1,x2, . . . ,xNÞ
T , a¼ ða1, . . . ,aNÞ

T , e¼ ð1, . . . ,1ÞT , y¼
ðy1, . . . ,yNÞ

T , Q ¼ ½qij�N�N , D¼ diagðd1, . . . ,dNÞ, PðxÞ ¼ ðPðx1Þ, . . . ,
PðxNÞÞ

T and the other notations are the same as before.
Let ððxnÞ

T ,mnÞ
T denote an equilibrium point of (6). We have the

following results.
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