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a b s t r a c t

In this paper, the stability is discussed for high-order neural networks with proportional delay. The
proportional delay is a time-varying unbounded delay and different from the constant delay, bounded
time-varying delays and distributed delays. Based on Lyapunov method, matrix measure and generalized
Halanay inequality, a criterion is obtained to ensure the pth exponential stability of high-order neural
networks with proportional delay. The result can be extended to the neural networks with proportional
delay or multiple proportional delays. The obtained results are simple, effective and easy to be verified.
The simulating examples are exploited to illustrate the improvement and advantages of the obtained
results in comparison with some existing results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, delayed neural networks have attracted con-
siderable attention and many important results on them have
been given (see [1–22], and references therein). In fact, time delays
are ubiquitous for a variety of axon sizes and lengths and the finite
signal propagation time, which may cause instability, oscillation
and bifurcation, etc. Hence, time delays are introduced into the
models of neural networks. In most researches, time delays are
usually assumed to be bounded. However, time delays of the
practical systems may be unbounded. For example, in the models
of human brains, neural networks have memory function, and
time delays provide information of history and the entire history
affects the present, so in this case delays are inevitably unbo-
unded. Another example, in Web quality of service (QoS) routing
decision, proportional delay (i.e. delay is proportional to the time)
is usually required [23]. Therefore, it is significative to research the
unbounded delays neural networks, such as [14,17–22]. In [17],
authors address the stability of neural networks with unbounded
time-varying delays and with bounded Lipschitz continuous acti-
vation functions. Chen and Wang in [18] point out that along the
increasing of the delays, the stability of the equilibrium point will

change from exponential-stable to power-stable, log-stable, and
log–log-stable.

In this paper, we consider the stability of neural networks with
proportional delay. Proportional delay is proportional to the time
and a special unbounded time-varying delay. The proportional
delay systems are important mathematical models, which often
rise in some fields such as physics, biology systems and control
theory. Proportional delay equation research has attracted many
scholars' interests [24–26]. Since proportional delay equations are
different from other delayed equations, thus most results of the
stability for delayed neural networks cannot be directly applied to
neural networks with proportional delay, see [11,20–22]. Zhou in
[21] studied the dissipativity of cellular neural networks with
proportional delays. In [22], Zhou gave some criteria to ensure
global uniform asymptotic stability of cellular neural networks
with multi-proportional delays.

However, the general neural networks are lower-order and
shown to have limitations such as limited capacity, see [27–29],
which led many researchers to use neural networks with high
order connections. The high-order neural networks have greater
storage capacity, stronger approximation property, faster conver-
gence rate, and higher fault tolerance than lower-order neural
networks. Recently, various results on stability of high-order
delayed neural networks are obtained, see [30–34]. Cao et al. in
[31] studied a class of high-order bidirectional associative memory
neural networks with constant time delays. In [34], authors
discussed the global stability for high-order Hopfield-type neural
networks with bounded time-varying delays. To the best of our
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knowledge, few authors have considered the stability for high-
order neural networks with proportional delay.

Motivated by the above discussions, it is meaningful to study
the stability for high-order neural networks with proportional
delay, which is our aim in this paper. By using Lyapunov method,
matrix measure and generalized Halanay inequality, a sufficient
condition is acquired to ensure the pth exponential stability of
high-order neural networks with proportional delay. This result
can be extended to the neural networks with proportional delay or
multiple proportional delays. The obtained results are simple,
effective and easy to be verified. Some simulating examples
illustrate the improvement and advantages of the results in
comparison with some existing results. The main contributions
of this paper lie in three aspects: (i) our model of neural networks
is high-order and contains proportional delay, which is equivalent
to one of the high-order neural networks with time-varying
coefficients and constant delay; (ii) our results are about pth
(pAf1;2;1g) exponentially stable with uniform form, which are
different with others only about p¼1, p¼2 or p¼1; (iii) using
matrix measure avoids constructing the complex Lyapunov func-
tion, the obtained results are more simple and easy to be verified.

The rest of this paper is organized as follows. In Section 2, the
discussed model is proposed and some preliminaries are briefly
outlined. In Section 3, some criteria are derived for stability of the
proposed neural networks by matrix measure and generalized
Halanay inequality. In Section 4, some numerical examples are
provided to show the effectiveness of the obtained results. Some
conclusions are finally drawn in Section 5.

2. Model formulation and some preliminaries

Consider the high-order neural network with proportional
delay as follows:

_uiðtÞ ¼ �diuiðtÞþ ∑
n

j ¼ 1
½aijf jðujðtÞÞþbijgjðujðqtÞÞ�

þ ∑
n

j ¼ 1
∑
n

k ¼ 1
TijkgjðujðqtÞÞgkðukðqtÞÞþ Ji; i¼ 1;2;…;n; ð1Þ

where ui(t) is the membrane potential of the ith neuron at the time t,
di40 is a constant, f jð�Þ, gjð�Þ : R-R represent the nonlinear activa-
tion functions of the jth neuron, aij and bij denote the synaptic
connection weight of the jth neuron on the ith neuron at the time t
and qt, respectively, Tijk is the second-order synaptic weights of the
neural networks, Ji is the external input, q is the proportional delay
factor and satisfies 0oqo1, qt ¼ t�ð1�qÞt, in which ð1�qÞt
denotes the transmission delay and is the unbounded delay.

The initial conditions associated with the network (1) are of
the form

uiðsÞ ¼ ui0; sA ½qt0; t0�; i¼ 1;2;…;n;

where t0 is a constant. If t0 ¼ 0, sA ½qt0; t0� is equal to s¼ t0 ¼ 0.
Let

uðtÞ ¼ ðu1ðtÞ;u2ðtÞ;…;unðtÞÞT ; D¼ diagfd1; d2;…; dng; A¼ ðaijÞn�n;

B¼ ðbijÞn�n; f ðuðtÞÞ ¼ ðf 1ðu1ðtÞÞ; f 2ðu2ðtÞÞ;…; f nðunðtÞÞÞT ;

gðuðqtÞÞ ¼ ðg1ðu1ðqtÞÞ; g2ðu2ðqtÞÞ;⋯; gnðunðqtÞÞÞT ;

GðuðqtÞÞ ¼ diagfgðuðqtÞÞ; gðuðqtÞÞ;…; gðuðqtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

g;

Ti ¼ ðTijkÞn�n; T ¼ ðT1;…; TnÞT ; J ¼ ðJ1;…; JnÞT :

Then, the network (1) can be rewritten as follows:

_uðtÞ ¼ �DuðtÞþAf ðuðtÞÞþBgðuðqtÞÞþGT ðuðqtÞÞTgðuðqtÞÞþ J: ð2Þ

Consider the transformation defined as

yiðtÞ ¼ uiðetÞ; i¼ 1;2;…;n; ð3Þ
Letting yðtÞ ¼ ðy1ðtÞ; y2ðtÞ;…; ynðtÞÞT , τ¼ � ln q40, then we have

_yðtÞ ¼ etf�DyðtÞþAf ðyðtÞÞþBgðyðt�τÞÞþGT ðyðt�τÞÞTgðyðt�τÞÞþ Jg;
ð4Þ

Thus, the initial condition associated with the network (4) is
given by

yiðsÞ ¼ φiðsÞ; t0�τrsrt0; i¼ 1;2;…;n;

where φiðsÞACð½t0�τ; t0�;RÞ is a continuous function.

Remark 1. From the transformation (3), the system (2) is equiva-
lent to the system (4). And the system (4) is a class of high-order
neural networks with constant delay and variable coefficients. The
system (4) is different from the models in [30–34]. The coefficients
of the models in [30–34] are bounded time-invariant functions,
but in this paper the coefficients containing et of the model (4) are
unbounded time-varying functions.

In addition, the following definitions, lemmas and assumption
are needed.

Definition 1. An equilibrium point un ¼ ðun

1;u
n

2;…;un
nÞT of the

system (2) is said to be pth (pAf1;2;1g) globally exponentially
stable, if there exist two positive constants M40 and λ40 such
that

Juðt; t0;u0Þ�un JprMJu0�un Jpe� λt

holds, where u0 ¼ ðu10;u20;…;un0ÞT is the initial condition of the
system (2), uðt; t0;u0Þ is the solution of system (2).

Definition 2 (Vidyasagar [35]). For any real matrix A¼ ðaijÞn�n, its
matrix measure is defined as

μpðAÞ ¼ lim
ε-0þ

J IþεAJp�1
ε

;

where J � Jp denotes the matrix norm in Rn�n, I is the identity
matrix, pAf1;2;1g.

Let the matrix norm be as follows:

JAJ1 ¼max
j

∑
n

i ¼ 1
jaijj

( )
; JAJ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxðATAÞ

q
; JAJ1 ¼max

i
∑
n

j ¼ 1
jaijj

( )
:

Then, we can obtain the corresponding matrix measure as follows:

μ1ðAÞ ¼max
j

ajjþ ∑
n

i ¼ 1;ia j
jaijj

( )
; μ2ðAÞ ¼

1
2
λmaxðAT þAÞ; μ1ðAÞ

¼max
i

aiiþ ∑
n

j ¼ 1;ja i
jaijj

( )
:

Lemma 1 (Vidyasagar [35]). From the definition of matrix measure,
for any A;BARn�n, p¼ 1;2;1, we have

(1) � JAJprμpðAÞr JAJp;
(2) μpðαAÞ ¼ αμpðAÞ; 8α40;
(3) μpðAþBÞrμpðAÞþμpðBÞ.

Lemma 2 (Tian [36], A generalized Halanay's inequality). Suppose

_uðtÞrγðtÞ�αðtÞuðtÞþβðtÞ sup
t� τrσr t

uðσÞ

holds for any tZt0. Here τZ0, and γðtÞ, αðtÞ, βðtÞ are continuous
functions such that 0rγðtÞrγn, αðtÞZα0, 0rβðtÞrqαðtÞ for any
tZt0 with constants γn40, α040, 0rqo1. Then we have

uðtÞr γn

ð1�qÞα0
þGe�μnðt� t0Þ
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