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a b s t r a c t

By far, least squares regression (LSR) is the most widely used data modeling method in statistics and
mathematics because of its effectiveness and completeness. It plays an important underlying role in
many extensions, e.g., regularized LSR, weighted LSR, and lasso. Since LSR is a discriminative model, it
allows only sampling of the target variables conditioned on observations. In this paper, we present the
latent LSR (LLSR), a generative model, which enables LSR to exploit the structural information hidden in
the explanatory variables by imposing a sparsity-encouraging prior over the precision matrix of the
latent variable. A maximum a posteriori (MAP) estimate is applied to obtain a point estimate of the
model parameters. Both the toy example and real data tests suggest the effectiveness of LLSR.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Least squares regression (LSR), the most popular linear model
in statistics and mathematics, is an effective tool in pattern
recognition and machine learning. Given a set of training samples,
LSR finds the coefficients of a linear model by minimizing the
residual sum of squares. When the empirically estimated covar-
iance matrix is of full rank, the model coefficients of least squares
can be efficiently obtained by solving a linear system. LSR achieves
competitive performance in many practical applications compared
with sophisticated nonlinear models, especially when the amount
of training samples is small or the signal-to-noise ratio is low [1].

LSR plays an important underlying role in many extensions,
which can be frequently founded in the literature, e.g., L2 norm
regularized LSR (RLSR) [2], locally regularized LSR [3], entropy
regularized LSR [4], weighted LSR [5], partial least square regres-
sion (PLSR) [6], orthogonal LSR [7], lasso [8], and some recent
works including [9–11], and [12]. Among them, RLSR and lasso are
very popular. In particular, RLSR can alleviate the over-fitting
phenomena in the least squares by imposing an ℓ2 norm regular-
ization on the model coefficients. According to the statistical
learning theory, this regularization improves the generalization
by restricting the volume of the solution space. By replacing the ℓ2
norm in the regularization with the ℓ1 norm, RLSR becomes lasso.
The ℓ1 norm regularization is equivalent to imposing a Laplacian
prior on the regression coefficients, and thus encourages the
sparsity of the model coefficients. In lasso, coefficients slightly
correlated to responses shrink to zero, while coefficients strongly

correlated to responses are retained. This sparsity makes the
learned model more succinct and simpler; controls the wei-
ghts of original variables and decreases the variance brought by
possible over-fitting with the least increment of the bias; and
provides a good interpretation of the model to reveal an explicit
relationship between the objective of the model and the given
variables.

From the viewpoint of machine learning, however, LSR and its
popular extensions are discriminative models, which are equiva-
lent to maximizing their corresponding conditional likelihood
functions. Thus, LSR and its extensions cannot exploit the hidden
structural information in the training samples. In this paper, we
assume that the explanatory variables are contaminated with
noises, and the latent distribution of the explanatory variables
has structural information encoded by a sparse precision matrix. In
particular, the resulting latent least square regression (LLSR)
models both the generation of the explanatory variables and the
responses via the latent variable. We carefully design an expecta-
tion–maximization (EM) algorithm for finding the maximum a
posteriori (MAP) estimates of model parameters. The proposed
LLSR enjoys the following advantages:

� It is a generative model, and thus is less sensitive to over-fitting
problem even when the amount of training samples is relatively
small.

� It exploits the structural information underlying the precision
matrix of the latent variables by using a sparsity-encouraging
prior. This significantly reduces the inaccurate estimation of the
covariance in LSR.

� The tuning parameters are integrated out by using the Bayesian
inference, and thus no cross validation is required.
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The rest of this paper is organized as follows. In Section 2, after
a brief introduction of LSR, we present the proposed LLSR. In
Section 3, we derive an EM type algorithm to learn the model
parameters. Section 4 presents a toy example to demonstrate the
effectiveness of LLSR in improving the estimation of precision
matrix and the generalization ability. Section 5 compares LLSR
against LSR and RLSR on three benchmark datasets. Section 6
concludes this paper (Table 1).

2. Latent least squares regression

In this section, we first briefly review LSR. Since it is equivalent
to the maximization of conditional likelihood, LSR is unable to
exploit structural knowledge hidden in data. Then, we present
LLSR, which is motivated by addressing this limitation of LSR.

2.1. Least squares regression

A linear regression function y¼ f ðxÞ models the relationship
between the explanatory variables denoted xARm and the
response variable denoted yAR, such that the model depends
linearly on the unknown parameters to be estimated from the
data. The regression function f(x) takes the form

f ðxÞ ¼ bþwTx; ð1Þ
where bAR is the bias and wARm is the parameter vector that
contains the regression coefficients [1]. Given a set of training
samples fðx1; y1Þ; ðx2;2Þ;…; ðxn; ynÞg, LSR estimates b and w by
minimizing the residual sum of squares

RSS¼ ∑
n

i ¼ 1
ðyi�b�wTxiÞ2: ð2Þ

By assuming a conditional Gaussian distribution on the response y,
i.e., y�N ðf ðxÞ;σ2Þ, the minimization defined by Eq. (2) has a

probabilistic interpretation that the log conditional likelihood on n
independent and identically distributed training samples takes the
form

L¼ �n ln σ� 1
2σ2 ∑

n

i ¼ 1
ðyi� f ðxiÞÞ2þConst: ð3Þ

It is direct to obtain that the maximization of Eq. (3) is
equivalent to the minimization of Eq. (2), although the former
provides the estimate of σ. Fig. 1 shows LSR cannot model
explanatory variables x. Therefore, LSR has the following short-
comings. First, it is unable to deal with the case where the
explanatory variables x are contaminated with noises. Second, it
does not utilize any structural information hidden in the expla-
natory variables x. And in this study, we consider one certain type
of structural information, i.e., the sparsity of the precision matrix
for the latent distribution of explanatory variables.

2.2. Latent least squares regression

In latent least squares regression (LLSR), a latent variable z is
introduced, and the explanatory variables x and the response y are
modeled as

x¼ zþe1
y¼ bþwTzþe2;

(
ð4Þ

where we assume that zARm is sampled from a Gaussian distribu-
tion N ðμ; S�1Þ,1 while noises e1ARm and e2AR are sampled from
N ð0;σ1IÞ and N ð0;σ2Þ, respectively. The probability distributions of
z, x, and y are given by

pðzjμ; SÞ ¼ detðSÞ1=2
ð2πÞm=2 e�ð1=2Þðz�μÞT Sðz�μÞ; ð5Þ

pðxjz;σ1Þ ¼
1

ð
ffiffiffiffiffiffi
2π

p
σ1Þm

e�ð1=2σ2
1Þðx� zÞT ðx� zÞ; ð6Þ

pðyjz;w; b;σ2Þ ¼
1ffiffiffiffiffiffi
2π

p
σ2

e�ð1=2σ2
2Þðy�wTz�bÞ2 : ð7Þ

Fig. 2 is the graphical model representation of LLSR and shows
that LLSR models both the generation of the explanatory variables
x and the response y by introducing a latent variable z. In the next
subsection, we show that the precision matrix S facilitates the
exploration of structural information hidden in the explanatory
variables.

Let the model parameters of LLSR be Θ¼ fμ; S;w; b;σ1;σ2g, and
then the complete joint probability of ðz; x; yÞ is given by

pðz; x; yjΘÞ ¼ pðzjμ; SÞpðxjz;σ1Þpðyjz;w; b;σ2Þ: ð8Þ

Fig. 1. The graphical model representation of LSR.

Fig. 2. The graphical model representation of LLSR.

Table 1
Summary of important notations throughout this paper.

Notation Description

fx; y; zg Explanatory variable, response, and latent variable
fμ; Sg Parameters for z, i.e., mean and precision matrix
σ1 Noise level, i.e., standard deviation, for x
σ2 Noise level, i.e., standard deviation, for y
fw; bg Regression parameter
Θ All parameters fμ; S;w; b; σ1 ; σ2g
pðx; yjΘÞ Joint likelihood
pðΘÞ Prior probability, for Θ
â An empirical estimation of variable a
KLðqjjpÞ Kullback–Leibler divergence between distribution q and p

1 The S is the precision matrix, which is the inverse of the covariance matrix.
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