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This paper deals with the problem of robust stochastic stability analysis for a class of neutral-type
uncertain neural networks with Markovian jumping parameters and time-varying delays. By introducing
an novel mode-dependent Augmented Lyapunov-Krasovskii functional with delay partitioning and
Wirtinger-based integral inequality techniques, some improved delay-dependent stochastically stable
conditions are proposed in the form of LMIs. Numerical simulations are provided to show the
effectiveness and less conservatism of the results.
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1. Introduction

In the last few decades, the study of neural networks has shown
an increasing research for their wide application in many fields such
as pattern recognition, signal processing, optimization problem,
knowledge acquisition and so on [1,2]. It is well known that the
stability has been proved to be one of the most important behaviors
for neural networks, meanwhile, time delay often appears in neural
networks due to the signal transmission lags between neurons, and it
is frequently the reason of instability and poor performance in neural
networks. Therefore, the stability analysis problem of delayed neural
networks have received much attention in recent years, and a
number of results related to this problem have been published, see,
for example, in [3-10]. Furthermore, it is common that the time delay
occurs not only in system states or outputs but also in the derivatives
of system states, the systems containing the information of past state
derivatives are called neutral-type systems. Accordingly, the stability
analysis of neutral-type neural networks has also been received
considerable attention and lots of works were reported in recent
years [11-15].
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On the other hand, as an important kind of hybrid systems,
Markovian jumping systems have been widely studied in the past
decades due to their advantage of modeling many practical dynamic
systems, such as manufacturing systems, networked control systems,
economics systems, fault-tolerant control systems, etc., and lots of
works on stability analysis, controller synthesis and filter design have
been focused on the study for Markovian jumping systems [16-21].
Recently, there were lots of research works on the dynamics analysis
for delayed neural networks with Markovian jumping parameters
have been reported in the literature [22-34]. For example, for neural
networks with Markovian jumping parameters and time delays, the
problem of stability analysis and passivity analysis have been inves-
tigated in [22-24] and [27,28], respectively. And the same problems
have been proposed in [29-32] and [33,34] for the neutral-type
delayed neural networks with Markovian jumping parameters. It is
worth mentioning that, although there are already many works to
deal with the problem of dynamic analysis to those neural networks,
they are still conservative to some extent, for example, the technique
to deal with the cross products in most of those works was Jensen
inequality, it will lead to some conservativeness of the achieved res-
ults, which leaves great room for further research.

In this paper, the problem of robust stochastic stability in the
mean square for neutral-type uncertain neural networks with
Markovian jumping parameters and time-varying delays is inves-
tigated. By constructing a novel augmented Lyapunov-Krasovskii
functional based on the idea of delay partitioning, and using new
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effective techniques(reciprocally convex approach and Wirtinger-
based integral inequality), some delay-dependent stochastic sta-
bility conditions are obtained in terms of LMIs. Numerical exam-
ples are given to show the effectiveness of the achieved criteria.
Notation: Throughout this paper, for symmetric matrices X and
Y, the notation X > Y (respectively, X > Y) means that the matrix
X —Y is positive semi-definite (respectively, positive definite); I is
the identity matrix with appropriate dimension; M' represents the
transpose of the matrix M; R" denotes the n-dimensional Eucli-
dean space; Oy, represents a zero matrix with m x n dimensions;
Il - I denotes the Euclidean norm for vector or the spectral norm of
matrices; sym(A) denotes A+AT; (£, F, P) is a probability space,
where €2 is the sample space, F is the o-algebra of subsets of the
sample space, and P is the probability measure on F; and
Lﬁo([—h,O]; R™) denotes the family of all F— measurable C([—h,
0]; R")-valued random variables &= {£(@): —h <0 <0} such that
SUP_p < 9 < 0E(IEB)I?) < 0o, where £{-} stands for the expectation
operator with respect to some probability measure P. The nota-
tions X >0 (> 0) is used to denote a symmetric positive-definite
(positive-semidefinite) matrix. In symmetric block matrices or
complex matrix expressions, we use an asterisk s to represent a
term that is induced by symmetry, and diag{-} stands for a block-
diagonal matrix. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.

2. System description and preliminaries

Consider the neutral-type neural networks with Markovian
jumping parameters and mixed delays

X(t) = E(re, X(t — 71(8)) + A(re, OX(0) +B(re, Df (x(1))
ot
+C(re, Of (X(E—72(8))) + D(r¢, £) /t mf(X(S))ds, 1)

where x(t) = [x1(t),X2(t), ... Xa(t)] e R" is the neuron state vector;
FEO) =F1 X1 f2X2(), .. fuxa( )] €R", is the neuron activa-
tion function vectors; {r;,t>0} is a right-continuous Markov
process defined on the probability space which takes values in a
finite set A" = {1, 2, ..., s} with transition probability matrix A = (7;;)
given by

miA+0(A) if i 4],

Pirea=jine=iy =< 1+mid+od) if i=j, 2

where A >0 and limy_,¢0(4)/A =0, 7;; >0 is the transition rate
fromitojifi+jand 7; = — Y , jm;. The uncertain matrices of the
system E(r, t), A(ry, t), B(r, t), C(r, t), D(1¢, t) denote interconnection
weight matrices and can be described by

[E(re, t) A(re,t) B(re,t) C(re,t) D(re, )] =[E(rt) A(re) B(re) C(re) D(rp)]
+G(ro)J(re, )[Ne(re) Na(re) Np(re) Ne(re) Ng(re)l, 3

where A(ry) = —diag(a(re), a1(re), ..., an(re)), E(re), B(re), C(re), D(re),
G(r¢), Ne(re), Ng(re), Np(re), Ne(re) and Ngy(ry) are real constant
matrices. For simplicity, for each r,=ie({1,2,...,s}, the matrices
A(ry) will be denoted as A(r;) = A;, E(r¢) = E;, and so on. J(r(t), t) is an
unknown time-varying matrix which satisfies

J . 0jr@.n <1 @
The time-varying delay 7;(t), 7,(t) and 75(t) are satisfying

OST{ ST](t)STT, ‘b](t)Sﬂl,
0<7y <) <7, T2(t) <y,
0O<tm()<r7s. (5)

Furthermore, we make the following assumption for the neu-
ron activation functions f;(x(-)).

Assumption 1. The activation functions f;(x(-)) are continuous,
bounded and satisfy

ve ka((?z :];k(ﬂ)

where f1(0)=0, a,feR, a#f,and y;, 7} are known real scalars.

<ry., k=12,...,n (6)

In order to obtain our main results, the following definition and
lemmas are employed throughout our paper.

Definition 1. The trivial solution (equilibrium point) of the
neutral-type neural networks with Markovian jumping para-
meters (1) is said to be robustly stochastically stable in the mean
square, if

lim &{Ix(©11%) =0, )
for all admissible uncertainties satisfying (3)-(4).

Lemma 1 (/35]). Let A, D, E be real constant matrices with appro-
priate dimensions, matrix F(t) satisfies FT(t)F(t)<I. For any € >0,
then

DF(t)E+ETFT(t)DT < e~ 'DD" + ¢ETE. 8)
Lemma 2 (/36]). For any symmetric definite matrix M=M" >0,

scalar y > 0 and vector function w : [0,y]—R™ such that the integra-
tions in the following are well defined, the following inequality holds

7 " o MaxBdf = ( [ ’ w(/f)dﬁ) ‘M / " w(prdp. ©)

Lemma 3 (/37]). For any differential vector function &(t) and scalar
function d(t) with 0 <d; < d(t) <d,, and for any matrices Z e R*",
U eR™" with [VZ] >0, the following inequality always holds

t—d; . .
~@y-dy [ E@ @da < o), (10)
where
T

no) = [&e—d' Ee—d)' &e—dy)']

-U (=4 V4
U=| = —2U+Z+7Z" U-Z|. 1)

£ sk -U

Lemma 4 ([38]). Let fy, f5,....fn : R™ — R have positive values in an
open subsets D of R™. Then, the reciprocally convex combination of f;
over D satisfies

) 1
(il fé}gai = 1)Zi:aifi(f) = zi:fi(t)+ gy(lt))(igjgﬁ(t) "
subject to
filt)  g;®
{gij(t) :R™ >R, g;(t) = g;i(1), [gﬁ(t) fjj(t) } > 0}. (13)

Lemma 5 (/39]). For any given positive matrix Z > 0, the following
inequality holds for differentiable function x(t) in [a, f]—R":

s ~
/ XT(s)ZX(s)ds > L6TZ 0, (14)

“p-a

where

X(P)—x(@)
0= | x(p)-+x(e)— 52 [V x(s)ds

and Z = diag(Z,32).
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