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a b s t r a c t

This letter introduces a probabilistic cluster kernel for data clustering. The proposed kernel is computed
with the composition of dot products between the posterior probabilities obtained via GMM clustering.
The kernel is directly learned from the data, is parameter-free, and captures the data manifold structure
at different scales. The projections in the kernel space induced by this kernel are useful for general
feature extraction purposes and are here exploited in spectral clustering with the canonical k-means. The
kernel structure, informative content and optimality are studied. Analysis and performance are
illustrated in several real datasets.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is of fundamental importance in data analysis. This is
reflected in the vast literature on the subject, including well-
known methods such as k-means and Gaussian mixture models
(GMMs) [1]. Recently, very promising approaches to clustering
have been proposed in the form of the interrelated kernel-based
and graph-spectral techniques [2–4]. These methods typically
consist of two separate stages: first, features are generated based
on the (top) eigenvalues (spectrum) and eigenvectors of a matrix
that encodes similarities between pairs of data objects. Then,
extracted features are globally clustered using k-means. The main
advantages of such methods are their well-understood behavior in
terms of linear algebra and their ability to correctly cluster both
linear and nonlinear data structures.

The similarity (kernel) matrix is commonly computed based on a
parameterized function such as the radial basis function (RBF). The
most important parameter in RBFs is the width, which basically
determines a fixed scale of analysis, and the choice of this parameter
is of paramount importance. Lately some probabilistic approaches

have been introduced to design kernel functions that capture the
signal characteristics. Among them, we stand out the Fisher kernel
[5] which combines the advantages of generative kernels with
discriminative methods. Within generative approaches [6] exist
different methodologies, such as exploiting the probabilistic nature
of generative embeddings with information theoretical kernels [7] or
kernels based on GMM [8]. Nevertheless, although all these kernel
functions have shown very good results, three main shortcomings
arise: (1) they all require first assuming a data generative model (e.g.
Gaussian [8], Riccian [7], etc.) for which explicit metaparameter-
dependent feature extractors need to be derived; (2) they have all
been specifically designed and applied to supervised problems,
mainly through the Support Vector Machine (SVM); and (3) they
need a priori knowledge about the data to fix crucial parameters.
These problems prevent using such kernels for data clustering, as no
prior knowledge (besides the number of clusters in many cases) is
assumed.

In this letter, we address all these issues by presenting a
parameter-free kernel function based on clustering and used for
data clustering. The idea is to encode similarity between objects
using their probability of being grouped together at different
scales, which is obtained from multiple “weak” learners based
on GMM clustering. These local linear clusterings are then com-
bined to build a global multiscale kernel that is used for spectral
decomposition. As a result, an ensemble of linear clusterings
enables nonlinear clustering [9].

The key quantity we introduce is a generative probabilistic cluster
kernel function that is learned directly from the data by looking at
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local-to-global similarities along the manifold. This entails no para-
meter tuning, which is especially beneficial in the current context of
unsupervised clustering. We analyze main properties of the kernel
and compare it to the standard RBF kernel and other kernel
clustering approaches. The structure, informative content and optim-
ality are studied. Analysis and performance are illustrated in several
real problems.

2. Probabilistic cluster kernel (PCK)

Given n data points xiARd, i¼1,…,n, the proposed generative
kernel, Kcðxi; xjÞ, is directly learned by clustering the available data.
In particular, we assume a Gaussian mixture model (GMM) and
apply the Expectation-Maximization (EM) algorithm to cluster the
data. We repeat this operation for a different number of clusters,
g¼ 2;…;Gþ1, and different initializations, q¼1,…,Q, resulting in
Q�G clusterings (data partitions). Then, we calculate the member-
ship of each sample xi to the clusters, i.e. the posterior probability
vector,2πiðq; gÞARg , for each one of the estimated clusterings (see
Algorithm 1). The probabilistic cluster kernel Kc is then computed as
a composite kernel by averaging all the dot products between the
posterior probability vectors [10]

Kcðxi; xjÞ ¼
1
Z

∑
Q

q ¼ 1
∑
Gþ1

g ¼ 2
πiðq; gÞ>πjðq; gÞ; ð1Þ

where Z is a normalization factor. After building the kernel matrix
with a sufficiently large number of clusters G and realizations Q,
we proceed as in the standard spectral clustering approach,
described above.

Algorithm 1. PCK kernel: training phase.

Require: fxigni ¼ 1: training data, Q: realizations, G: num. of
clusters

Ensure: Kc: PCK kernel matrix, GMM clustering parameters:
Θqg

for q¼1 to Q do
for g¼2 to Gþ1 do Θqg’ EM-GMM with g clusters

over fxigni ¼ 1
for i¼1 to n do
πiðq; gÞ’Pð�jxi;ΘqgÞ GMM posteriors
for j¼1 to n do
πjðq; gÞ’Pð�jxj;ΘqgÞ GMM posteriors

Kcðxi; xjÞ’Kcðxi; xjÞþπiðq; gÞ>πjðq; gÞ
end for

end for
end for

end for

Algorithm 2. PCK kernel: test phase.

Require: fxigni ¼ 1: training data, fxn

j g
m
j ¼ 1

: test data,

GMM clustering parameters: Θqg

Ensure: Kn

c : PCK test kernel matrix
for q¼1 to Q do
for g¼2 to Gþ1 do

for i¼1 to n do
πiðq; gÞ’Pð�jxi;ΘqgÞ GMM posteriors
for j¼1 to m do
πn

j ðq; gÞ’Pð�jxn

j ;ΘqgÞ GMM posteriors

Kn

c ðxi; xn

j Þ’Kn

c ðxi; xn

j Þþπiðq; gÞ>πn

j ðq; gÞ
end for

end for
end for

end for

Intuitively, the probabilistic cluster kernel accounts for prob-
abilistic similarities at small and large scales (which are related to
the number of clusters, since a higher number of clusters implies
local scales and vice versa) between all samples along the data
manifold. On one hand, a high number of realizations Q improves
the robustness of the ensemble of clusterings at the expense of
increasing the computational cost. On the other hand, the opti-
mum maximum number of clusters G should be (1) high to
capture the local structure and greater than the number of desired
classes in the dataset; and (2) reasonably lower than the number
of samples (specially in high dimensional spaces) in order to
estimate the data clusters accurately. Actually, the proposed kernel
has a very important advantage that it does not assume an ad hoc
parametric form or sophisticated priors and thus is more flexible
and general. Moreover, the method does not require computa-
tionally demanding procedures. Note that whereas the cost of
building the RBF kernel matrix is Oðn2Þ, the PCK kernel involves
both the estimation of the EM-GMM clustering and the kernel
matrix generation for each one of the Q � G clusterings. However,
the complexity of the eigen-decomposition of RBF or PCK kernels
is Oðn3Þ, which constitutes the real bottleneck of spectral cluster-
ing in large datasets. Finally, note that the proposed kernel
generalizes previous (semi) supervised approaches based on
cluster kernels, e.g. the approach in Weston et al. [11] is obtained
wherein solely the cluster assignment with maximum posterior
probability is considered. Moreover, it is worth noting that the
proposed multiscale approach might also be applied to other
generative kernels such as the Fisher kernel [5].

2.1. Properties

This subsection studies the main theoretical properties of the
proposed cluster kernel in a Hilbert space.

Property 1. The probabilistic cluster kernel performs a linear kernel
in a posterior probability space.

Proof. From Eq. (1), an arbitrary kernel function that forms the
probabilistic cluster kernel is Kcðxi; xjÞ ¼ 〈ϕðxiÞ;ϕðxjÞ〉¼ 〈πi;πj〉, and
then the explicit feature mapping is ϕðxiÞ ¼ πi. Therefore, the
probabilistic cluster kernel computes second-order statistics in a
probability space. □

Property 2. The probabilistic cluster kernel Kc is a positive definite
(p.d.) kernel.

Proof. The function Kc : X � X-R is a p.d. kernel if and only if
there exists a Hilbert space H and a feature map ϕ : X-H such
that for all x; x0AX we have Kcðx; x0Þ ¼ 〈ϕðxÞ;ϕðx0Þ〉H. Using stan-
dard properties of kernel functions and Property 1, and as a simple
consequence of the bilinearity of the dot product 〈�; �〉H, then
8ciAR:

∑
n

i;j ¼ 1
cicjKcðxi; xjÞ ¼ ∑

n

i;j ¼ 1
cicj〈ϕðxiÞ;ϕðxjÞ〉H

2 The EM algorithm estimates the GMM parameters Θ (prior αk, mean μk and
covariance Σk for each component k of the mixture) which are used to compute the
posterior probabilities

Pðkjxi;ΘÞ ¼ αkjΣkj�1=2 expð�ð1=2Þðxi�μkÞ>Σ�1
k ðxi�μkÞÞ

∑lαljΣlj�1=2 expð�ð1=2Þðxi�μlÞ>Σ�1
l ðxi�μlÞÞ

:

In this work, the vector of posterior probabilities for the GMM obtained with g
clusters and initialization q, Pð�jxi ;Θqg Þ, is referred to as πiðq; gÞ for simplicity.
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