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a b s t r a c t

In this paper, we consider the global exponential stability in a Lagrange sense for memristive recurrent
neural networks with time-varying delays. Here, we adopt nonsmooth analysis and control theory to
handle memristive neural networks with discontinuous right-hand side, and by constructing proper
Lyapunov functionals and using inequality technique, several new sufficient conditions in linear matrix
inequality form are given to ensure the ultimate boundedness and global exponential attractivity of the
memristor-based neural networks in the sense of Filippov solutions. In addition, these conditions do not
require the connection weight matrices to be symmetric and the delay functions to be differentiable.
Finally, numerical simulations illustrate the effectiveness of our results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the development of application as well as many technol-
ogies, memristive neural networks have proven as a promising
architecture in neuromorphic systems for the non-volatility, high-
density and unique memristive characteristic [1–4]. As we know,
the neural networks are very important nonlinear circuit networks
because of their wide applications in associative memory, pattern
recognition, signal processing, systems control, optimization pro-
blem, and the integration and communication delays are unavoid-
ably encountered both in biological and artificial neural systems,
which may lead to poor performance such as oscillation, instabil-
ity, and chaos. Hence, there are a large number of results on the
stability in a Lyapunov sense for neural networks [5–11]. On the
other hand, due to the finite speed of transmission and spreading
in practical, time delays are unavoidable exist [10–14]. Therefore,
dynamics analysis of memristive recurrent neural networks with
time delays has been attracted increasing attention, and have
appeared many results, e.g., by constructing proper Lyapunov
functionals and using the differential inclusion theory, some
sufficient conditions were obtained for global uniform asymptotic
stability [15], exponential stability [16–18], exponential synchro-
nization [19,20].

It is worth mentioning that Lyapunov stability in [5–11] refers
to the stability of equilibrium points which requires the existence

of equilibrium points, while Lagrange stability refers to the
stability of the total system which does not require the informa-
tion of equilibrium points. Moreover, the global stability in a
Lyapunov sense can be viewed as a special case of stability in a
Lagrange sense by regarding an equilibrium point as an attractive
set [6,11]. So it is necessary and rewarding to study Lagrange
stability. Basically, the goal of the study on global stability in a
Lagrange sense is to determine global attractive sets. Once a global
attractive set is found, a rough bound of periodic states and chaotic
attractors can be estimated.

Lagrange stability has long been studied in theory and applica-
tions of engineering systems, e.g., Rekasius [21] considered asymp-
totic stability in a Lagrange sense for nonlinear feedback control
systems, Passino and Burgess [22] adopted the concept of Lagrange
stability to investigate discrete event systems, and Hassibi et al. [23]
studied the Lagrange stability of hybrid engineering systems.
Recently, a considerable number of works also have appeared to
study the Lagrange stability for neural networks with time-delays
these years (see [24–32]).

However, to our best knowledge, few authors have discussed
the stability in a Lagrange sense of memristive recurrent neural
networks. Motivated by the above analysis, in this paper, we will
study the global exponential stability in a Lagrange sense and the
existence of globally exponentially attractive sets for memristive
recurrent neural networks with time-varying delays as follows:
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according to the feature of the memristor and the current–voltage
characteristics in Fig. 1, as the previous works [15–19], we can get
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all constant numbers. In system (1), xi(t) is the state of the i-th
neuron at time t; diðxiðtÞÞ is the i-th neuron self-inhibitions at time
t; aijðxiðtÞÞ is the connection weight; bijðxiðtÞÞ is the delayed
connection weight; f jðxjðtÞÞ denotes the neuron activation func-
tion; τjðtÞ corresponds to the transmission delays and satisfies
0rτjðtÞrτ (τ¼max1r jrn;tZ0fτjðtÞg is a positive constant); Ii(t) is a
continuous bounded external input function, i; j¼ 1;2;…;n.
Obviously, the memristive recurrent neural network (1) is a
state-dependent switched system, which is the generalization of
those for conventional recurrent neural networks.

The organization of this paper is as follows. Some preliminaries
are introduced in Section 2. Some new sufficient conditions in
linear matrix inequality concerning global exponential stability in
a Lagrange sense and the existence of globally exponentially
attractive sets of the memristive recurrent neural networks (1)
are derived in Section 3. Numerical simulations are given to
demonstrate the effectiveness of the proposed approach in
Section 4. Finally, this paper ends by a conclusion.

2. Preliminaries

For convenience, we first make the following preparations.
Throughout this paper, solutions of all the systems considered

in the following are intended in Filippov's sense (see [33]). And ½�; ��
represents the interval. Let Cð½�τ;0�;RnÞ be the Banach space
of continuous functions φ : ½�τ;0�-Rn with the norm JφJ ¼
supsA ½� τ;0�jφðsÞj. For vector v¼ ðv1; v2;…; vnÞT ARn, JvJ is said
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square matrix, MT ;M�1 and λðMÞ denote the transpose, inverse
and the eigenvalues of the square matrix M, respectively. Mo0
means that M is a negative definite matrix, and M1oM2 indicates
M1�M2o0. co½ξ

i
; ξ i� denotes the convex hull of ½ξ

i
; ξ i�, clearly, in

this paper, we have co½ξ
i
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i
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matrix, where Θ¼ ðθijÞn�n, Δ¼ ðϑijÞn�n, it follows that Θ{Δ, which
means Θ{Σ ¼ ðσijÞn�n{Δ, we have θijoσijoϑij; i; j¼ 1;2;…;n;

where ΣA ½Θ;Δ�. For a continuous function kðtÞ : R-R, Dþ kðtÞ is
called the upper right dini derivative and defined as Dþ kðtÞ ¼
limh-0þ ð1=hÞðkðtþhÞ�kðtÞÞ. For any initial function ϕðsÞAC;
sA ½�τ;0�, the solution of system (1) that starts from the initial
condition ϕðsÞ will be denoted by xðt;ϕðsÞÞ. In this paper, we first
make the following assumption for system (1).

Assumption 1. The neuron activation functions f iðxiÞ in system (1)
are bounded, that is, there exist positive constant hi40 such that
jf iðxiÞjrhi. And there exists a diagonal matrix L¼ diagðL1; L2;…; LnÞ,
for 8s1; s2AR; s1as2, the neuron activation of system (1) satisfies

0r f iðs1Þ� f iðs2Þ
s1�s2

rLi; f ið0Þ ¼ 0; ð2Þ

where Li; i¼ 1;2; :;n, are positive constants.

Now, as the literature [15–20], by applying the theories of set-
valued maps and differential inclusions [33–35], from system (1),
we have
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A ¼ ðaijÞn�n, B ¼ ðbijÞn�n, B ¼ ðbijÞn�n, then, (3)and (4) can be rewrit-

ten as follows:
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or equivalently, there exist bDðtÞA ½D;D�; bAðtÞA ½A;A�, bBðtÞA ½B;B�
such that
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where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT , f ðxðtÞÞ ¼ ð f 1ðx1ðtÞÞ; f 2ðx2ðtÞÞ;…;

f nðxnðtÞÞÞT , τðtÞ ¼ ðτ1ðtÞ; τ2ðtÞ;…; τnðtÞÞ, IðtÞ ¼ ðI1ðtÞ; I2ðtÞ;…; InðtÞÞT .

Definition 1. A vector-value function (in Filippov's sense) xnðtÞ ¼
ðxn1ðtÞ; xn2ðtÞ;…; xnnðtÞÞT is a solution of system (1), with the initial
conditions ϕðsÞ ¼ ðϕ1ðsÞ;ϕ2ðsÞ;…;ϕnðsÞÞT ACð½�τ;0�;RnÞ, if xnðtÞ is
an absolutely continuous function on ½0; þ1Þ and satisfies the
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Fig. 1. The typical current–voltage characteristics of memristor.
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