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a b s t r a c t

This paper studies the existence and stability of periodic solution of the high-order discrete-time Cohen–
Grossberg neural networks with varying delays. The properties of M-matrix and the contracting mapping
principle are used to obtain a sufficient condition that guarantees the uniqueness and global exponential
stability of the periodic solution. In addition, a numerical example is given that demonstrates the effectiveness
of the proposed theoretical results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In 1983, Cohen–Grossberg initially proposed a neural network
model in [1], which is usually called Cohen–Grossberg neural
network model. It is well known that it has wide application in
signal and image processing, pattern recognition, associative
memory and combinatorial optimization. Therefore, the properties
of Cohen–Grossberg neural networks (i.e., the stability and the
attractiveness of the periodic solution) have been studied by many
researchers, and a large number of results were obtained [2–7].

However, most researchers paid attention to low-order Cohen–
Grossberg neural networks and did not consider the high-order
connected terms. In fact, the low-order neural networks have
many intrinsic limitations, such as slow convergence rate, small
storage capacity and low fault tolerance etc. In order to solve these
shortcomings, it is necessary to add high-order interactions to
these neural networks [8–10]. This motivated the extensively
study on the high-order Cohen–Grossberg neural networks in

the past few years and many useful results on the characteristics
for this type of high-order neural networks have been presented
[11–16]. For example, Zhang, Jiang and Teng [16] considered the
high-order Cohen–Grossberg neural networks with time-varying
delays, and established some sufficient conditions on the existence
and exponential stability of the anti-periodic solutions for these
networks.

For the continuous-time neural networks, it is of vital importance
to study the properties of its discrete-time counterparts due to the
following two reasons. On the one hand, the discrete-time analogs
contain much richer dynamics than its continuous-time counter parts.
On the other hand, we need to discretize the continuous-time
networks for computation and numerical simulation, and the
discrete-time analogs can be used for the digital simulation without
any loss of functionality of the continuous-time systems [17]. Recently,
researchers have carried out their study on the properties of the
discrete-time Cohen–Grossberg neural networks [18–22]. Liu, Xu and
Wang [18] studied the periodic solution of discrete-time Cohen–
Grossberg neural networks with disturbed delays by using suitable
Lypunov function and the properties of M-matrix. They gave several
sufficient conditions that ensure the uniqueness and global exponen-
tial stability of the periodic solutions. In addition, Li and Wang [20]
studied a class of the discrete-time delayed Cohen–Grossberg neural
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network models. Some sufficient conditions that guarantee the
existence and exponential stability of the periodic solution are
obtained by using Mawhin's coincidence degree theory and proper
Lyapunov function.

Based on the applications and features of both high-order Cohen–
Grossberg neural networks and discrete-time neural networks, it is
necessary to analysis the dynamic behaviors of high-order discrete-
time Cohen–Grossberg neural networks. Although researchers have
carried out extensively study on these networks, there are few results
about the properties of high-order discrete-time Cohen–Grossberg
neural networks now. This is the motivation of the study of this
paper. In this paper, we investigate the existence and stability of the
periodic solutions of high-order discrete-time Cohen–Grossberg
neural networks with varying delays. A sufficient condition is
obtained by using the properties of M-matrix and the contracting
mapping principle.

The rest of this paper is organized as follows. In Section 2, the
model of high-order discrete-time Cohen–Grossberg neural networks
with varying delays is given. In Section 3, a sufficient condition that
guarantees the uniqueness and global exponential stability of the
periodic solutions is presented. In Section 4, a numerical example is
given in order to demonstrate the effectiveness of our theoretical
results. Finally, some concluding remarks are given in Section 5.

2. Model description and preliminaries

The model of a high-order discrete-time Cohen–Grossberg
neural network with varying delays is

xiðkþ1Þ ¼ xiðkÞ�aiðk; xiðkÞÞ
�
biðk; xiðkÞÞ� ∑

n

j ¼ 1
cijðkÞf jðxjðkÞÞ:

� ∑
n

j ¼ 1
∑
n

l ¼ 1
dijlðkÞf jðxjðk�τijlðkÞÞÞU f lðxlðk�τijlðkÞÞÞ� IiðkÞ

�
; i¼ 1;2;…;n;

ð1Þ

where nZ2 is the number of neurons in the network, xi kð Þ denotes
the state associated with the i�th neuron at the time k; ai k; Uð Þ
represents the amplification function, bi k; Uð Þ is an appropriately
behaved function, cij kð Þ denotes the synaptic connection weights of
unit j to unit i; dijl kð Þ represents the synaptic connection weights of
unit j to unit i and unit l; f j Uð Þ is a measure of response or
activation to its incoming potential; τijl kð Þ is a nonnegative con-
stant, which means the transmission delay along the axon of unit j
to unit i and unit l; Ii kð Þ is the external bias on the i�th neuron at
the time k; cij kð Þ, dijl kð Þ, τijl kð Þ and Ii kð Þ are ω� periodic functions;
ai k; Uð Þ and bi k; Uð Þ are ω� periodic about the first argument,
where ω is a positive integer.

Let Z be the set of all integers, and Zþ
0 ¼ 0;1;2;…f g;

Zþ ¼ 1;2;…f g; a; b
� �

z ¼ a; aþ1;…;b�1; b
� �

; arb. For a ω� peri-

odic function S kð Þ, we define S¼ max
sA 0;ω½ �z

S kð Þ
�� ��; S ¼ min

sA 0;ω½ �z
S kð Þ
�� ��,

where ω is a positive integer. The system (1) is supplemented
with initial values given by

xiðsÞ ¼φiðsÞ; sA ½�τ;0�z; sup
sA ½� τ;0�z

jφðsÞjoþ1; ð2Þ

where τ¼ max
1r i;j;lrn

τijl
� �

:

For convenience of description, we introduce the following
assumptions that will be used in the proof of our main results.

H1ð Þ For the function ai Uð Þ, there exist positive constants ai and
Lai such that

0oaiðUÞrai; jaiðk; xÞ�aiðk; yÞjrLai jx�yj; 8x; yAR; i¼ 1;2;…;n;

H2ð Þ There exist ω� periodic functions γi kð Þ such that

γi kð Þraiðk; xÞbiðk; xÞ�aiðk; yÞbiðk; yÞ
x�y

; 8x; yAR; xay; i¼ 1;2;…;n;

H3ð Þ For the function f j Uð Þ, there exist positive constants Mj; Lj
such that

0r f j Uð ÞrMj; f j xð Þ� f j yð Þ
�� ��rLj x�y

�� ��; 8x; yAR; xay; j¼ 1;2;⋯n:

3. Existence and stability of periodic solution

Before giving the main results of this paper, we make some
preparations. Firstly, we give three useful lemmas.

Lemma 1. Let ðX; jjU jjÞ be a Banach space. If T : ðX; jjU jjÞ- X; jjU jjð Þ
is a contracting mapping, then there exists a only fixed point of
T in X.

Lemma 2. Let AZ0 be an n� n real matrix and the spectral radius
of A satisfies ρðAÞo1: Then, En�A is a non-singular M-matrix, where
En is an n� n identity matrix.

Lemma 3. Let A¼ ðaijÞn�n with aijr0; i; j¼ 1;2; :::;n; and ia j: The
following statements are equivalent:

(1) A is a non-singular M-matrix;
(2) There exists a vector ξ¼ ½ξ1; ξ2; :::; ξn�T 4 ½0;0; :::;0�T such that

Aξ40;
(3) A�1Z0.

Secondly, we define a space Cð½�τ;0�z;RnÞ. For 8Ψ ¼ ½φ1ðsÞ;
φ2ðsÞ;…;φnðsÞ�T AC, let jjΨ jj ¼ sup

sA ½�τ;0�z
∑n

i ¼ 1jφiðsÞj. It is easy to verify

that C is a Banach space. In addition, we denote the solution of system
(1) with initial condition Ψ by xðk;Ψ Þ ¼ ½x1ðk;Ψ Þ; x2ðk;Ψ Þ;…;

xnðk;Ψ Þ�T . Now, we explain how to use the properties of M-matrix
and the contracting mapping principle to prove the existence and
stability of the periodic solution of (1).

Theorem 1. Assume that ðH1Þ�ðH3Þ hold and we let W ¼ A�LaB�LΦ.
If W is a M-matrix, then system (1) has exactly oneω� periodic solution,
and it is globally exponentially stable, where

A¼ diagðγ
1
; γ

2
; U U U ; γ

n
Þ; La ¼ diagðLa1; La2; U U U ; LanÞ;

B¼ diag ∑
n

j ¼ 1
c1jMjþ ∑

n

j ¼ 1
∑
n

l ¼ 1
d1jlMjMlþ I1; ∑

n

j ¼ 1
c2jMjþ ∑

n

j ¼ 1
∑
n

l ¼ 1
d2jlMjMlþ I2;

 

U U U ; ∑
n

j ¼ 1
cnjMjþ ∑

n

j ¼ 1
∑
n

l ¼ 1
dnjlMjMlþ In

!
;

L¼ diagðL1; L2; U U U ; LnÞ;Φ¼ ½ϕij�n�n;ϕij ¼ ajcjiþ2aj ∑
n

l ¼ 1
djilMl:

Proof. Suppose that xðk;Ψ 1Þ; xðk;Ψ 2Þ are the solutions of system
(1) with initial values Ψ 1 ¼ ½φ1;φ2; U U U ;φn�T ;Ψ 2 ¼ ½ξ1; ξ2; U U U ;
ξn�T AC, respectively. From (1), we have

xi kþ1;Ψ 1
	 
�xi kþ1;Ψ 2

	 
¼ xi k;Ψ 1
	 
�xi k;Ψ 2

	 

� ai k; xiðk;Ψ 1Þ

	 

bi k; xiðk;Ψ 1Þ
	 
�ai k; xiðk;Ψ 2Þ

	 

bi k; xiðk;Ψ 2Þ
	 
� �

þai k; xiðk;Ψ 1Þ
	 


∑
n

j ¼ 1
cijðkÞ f j xjðk;Ψ 1Þ

	 
� f j xjðk;Ψ 2Þ
	 
h i

þ ai k; xiðk;Ψ 1Þ
	 
�ai k; xiðk;Ψ 2Þ

	 
� �
∑
n

j ¼ 1
cijðkÞf j xjðk;Ψ 2Þ

	 


þai k; xiðk;Ψ 1Þ
	 


∑
n

j ¼ 1
∑
n

l ¼ 1
dijlðkÞ

�
f j xj k�τijlðkÞ;Ψ 1

	 
	 

f l xl k�τijlðkÞ;Ψ 1
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